Skip to main content

Advertisement

Log in

Polymorphisms of FGFR1 in HBV-related hepatocellular carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers in China. It is important to understand the genetic mechanisms underlying the development and progression of HBV-related HCC and to identify new biomarkers for clinical treatment. The important role of fibroblast growth factor receptors (FGFRs) has been widely recognized in many types of cancers, but the association between FGFR polymorphisms and HCC carcinogenesis has been rarely reported. In this study, 199 patients with HBV-associated cirrhosis, 203 with HBV-associated HCC, and 184 healthy controls with no liver diseases were enrolled as participants. Using SNaPshot assays, five SNPs (rs13317, rs7825208, rs1047057, rs1047111, and rs1966265) of growth factor receptor genes were genotyped. Our results showed that the G/A and G/G genotypes at rs7825208 of FGFR1 were negatively correlated with HBV-related HCC (odds ratio (OR) = 0.45, 95 % confidence interval (CI) = 0.22–0.93, P = 0.027). However, after Bonferroni correction, these significant differences no longer existed (P > 0.05). Our results indicated that these five polymorphisms of fibroblast growth factor receptor genes do not play any independent roles in the tumorigenesis and progression of HBV-related HCC in Han Chinese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.

    Article  CAS  PubMed  Google Scholar 

  2. L’Hote CG, Knowles MA. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res. 2005;304:417–31.

    Article  PubMed  Google Scholar 

  3. Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16:233–47.

    Article  CAS  PubMed  Google Scholar 

  4. Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 2005;16:179–86.

    Article  CAS  PubMed  Google Scholar 

  5. Gong SG. Isoforms of receptors of fibroblast growth factors. J Cell Physiol. 2014;229:1887–95.

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta. 1823;2012:850–60.

    Google Scholar 

  7. Zhou L, Talebian A, Meakin SO. The signaling adapter, FRS2, facilitates neuronal branching in primary cortical neurons via both Grb2- and Shp2-dependent mechanisms. J Mol Neurosci. 2015;55:663–77.

    Article  CAS  PubMed  Google Scholar 

  8. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:103–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castellano E, Downward J. RAS interaction with PI3K: more than just another effector pathway. Gene Cancer. 2011;2:261–74.

    Article  CAS  Google Scholar 

  10. Yoshimura N, Sano H, Hashiramoto A, Yamada R, Nakajima H, Kondo M, et al. The expression and localization of fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1) in human breast cancer. Clin Immunol Immunopathol. 1998;89:28–34.

    Article  CAS  PubMed  Google Scholar 

  11. Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002;107:101–7.

    Article  CAS  PubMed  Google Scholar 

  12. Li F, Zhai YP, Tang YM, Wang LP, Wan PJ. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chrom Cancer. 2012;51:890–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008;68:2340–8.

    Article  CAS  PubMed  Google Scholar 

  14. Takeda M, Arao T, Yokote H, Komatsu T, Yanagihara K, Sasaki H, et al. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res. 2007;13:3051–7.

    Article  CAS  PubMed  Google Scholar 

  15. Rosty C, Aubriot MH, Cappellen D, Bourdin J, Cartier I, Thiery JP, et al. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation. Mol Cancer. 2005;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hernandez S, de Muga S, Agell L, Juanpere N, Esgueva R, Lorente JA, et al. FGFR3 mutations in prostate cancer: association with low-grade tumors. Mod Pathol. 2009;22:848–56.

    CAS  PubMed  Google Scholar 

  17. Zaid TM, Yeung TL, Thompson MS, Leung CS, Harding T, Co NN, et al. Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer. Clin Cancer Res. 2013;19:809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  19. Kudo M, Han KH, Kokudo N, Cheng AL, Choi BI, Furuse J, et al. Liver cancer working group report. Jpn J Clin Oncol. 2010;40 Suppl 1:i19–27.

    Article  PubMed  Google Scholar 

  20. Zhou L, Wei B, Xing C, Xie H, Yu X, Wu L, et al. Polymorphism in 3′-untranslated region of toll-like receptor 4 gene is associated with protection from hepatitis B virus recurrence after liver transplantation. Transpl Infect Dis. 2011;13:250–8.

    Article  CAS  PubMed  Google Scholar 

  21. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng AL, Shen YC, Zhu AX. Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma. Oncology. 2011;81:372–80.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8:292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Desnoyers LR, Pai R, Ferrando RE, Hotzel K, Le T, Ross J, et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene. 2008;27:85–97.

    Article  CAS  PubMed  Google Scholar 

  25. Mas VR, Maluf DG, Archer KJ, Yanek KC, Fisher RA. Angiogenesis soluble factors as hepatocellular carcinoma noninvasive markers for monitoring hepatitis C virus cirrhotic patients awaiting liver transplantation. Transplantation. 2007;84:1262–71.

    Article  PubMed  Google Scholar 

  26. Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505:97–102.

    Article  PubMed  Google Scholar 

  27. Huynh H, Ngo VC, Fargnoli J, Ayers M, Soo KC, Koong HN, et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res. 2008;14:6146–53.

    Article  CAS  PubMed  Google Scholar 

  28. Kim KB, Chesney J, Robinson D, Gardner H, Shi MM, Kirkwood JM. Phase I/II and pharmacodynamic study of dovitinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma. Clin Cancer Res. 2011;17:7451–61.

    Article  CAS  PubMed  Google Scholar 

  29. Kanai F, Yoshida H, Tateishi R, Sato S, Kawabe T, Obi S, et al. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharmacol. 2011;67:315–24.

    Article  CAS  PubMed  Google Scholar 

  30. Mross K, Stefanic M, Gmehling D, Frost A, Baas F, Unger C, et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res. 2010;16:311–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39:870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Udler MS, Meyer KB, Pooley KA, Karlins E, Struewing JP, Zhang J, et al. FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation. Hum Mol Genet. 2009;18:1692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. FitzGerald LM, Karlins E, Karyadi DM, Kwon EM, Koopmeiners JS, Stanford JL, et al. Association of FGFR4 genetic polymorphisms with prostate cancer risk and prognosis. Prostate Cancer Prostatic Dis. 2009;12:192–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ansell A, Farnebo L, Grenman R, Roberg K, Thunell LK. Polymorphism of FGFR4 in cancer development and sensitivity to cisplatin and radiation in head and neck cancer. Oral Oncol. 2009;45:23–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None

Funding

This study was supported by grants from the Zhejiang Provincial Natural Science Foundation (LY13H160004, Y15H160064), the Chinese High Tech Research & Development (863) Program (2012AA020204), the National S&T Major Project (No. 2012ZX10002017), and the National Natural Science Foundation of China (81401319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusen Zheng.

Additional information

Haiyang Xie and Chunyang Xing contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Xing, C., Wei, B. et al. Polymorphisms of FGFR1 in HBV-related hepatocellular carcinoma. Tumor Biol. 36, 8881–8886 (2015). https://doi.org/10.1007/s13277-015-3643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3643-4

Keywords

Navigation