Skip to main content
Log in

Targeting DNA-PKcs increased anticancer drug sensitivity by suppressing DNA damage repair in osteosarcoma cell line MG63

  • Research Article
  • Published:
Tumor Biology

Abstract

Many chemotherapy drugs exert anticancer effects through causing DNA damage, such as DNA topoisomerase inhibitor and platinum-containing drugs. DNA damage repair is an important mechanism of drug resistance which is responsible for metastasis and recurrence after chemotherapy. DNA-dependent protein kinase (DNA-PK) plays an important role in non-homology end joining (NHEJ) pathway. In this study, we aimed to determine whether DNA-PK catalytic subunit (DNA-PKcs) is expressed in osteosarcoma MG63 cell line and involved in drug resistance induced by DNA repair. We found that DNA-PKcs was expressed in osteosarcoma cell line MG63. The pDNA-PKcsT2609 was more expressed in cells treated with cisplatin (DDP) and etoposide (VP16). Down-regulation of DNA-PKcs produced higher sensitivity of MG63 cells to DDP or VP16 through increasing apoptosis and causing cell cycle arrest in the G1 phase. Our study supported that DNA-PKcs was involved in drug-induced DNA damage repair and related to chemosensitivity of osteosarcoma MG63 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meyers PA. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther. 2009;9:1035–49.

    Article  CAS  PubMed  Google Scholar 

  2. Jackson SP. DNA-dependent protein kinase. Int J Biochem Cell Biol. 1997;29:935–8.

    Article  CAS  PubMed  Google Scholar 

  3. Mi J, Dziegielewski J, Bolesta E, Brautigan DL, Larner JM. Activation of DNA-PK by ionizing radiation is mediated by protein phosphatase 6. PLoS One. 2009;4:e4395.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hosoi Y, Miyachi H, Matsumoto Y, Ikehata H, Komura J, Ishii K, et al. A phosphatidylinositol 3-kinase inhibitor wortmannin induces radioresistant DNA synthesis and sensitizes cells to bleomycin and ionizing radiation. Int J Cancer. 1998;78:642–7.

    Article  CAS  PubMed  Google Scholar 

  5. Belenkov AI, Paiement JP, Panasci LC, Monia BP, Chow TY. An antisense oligonucleotide targeted to human Ku86 messenger RNA sensitizes M059K malignant glioma cells to ionizing radiation, bleomycin, and etoposide but not DNA cross-linking agents. Cancer Res. 2002;62:5888–96.

    CAS  PubMed  Google Scholar 

  6. Shintani S, Mihara M, Li C, Nakahara Y, Hino S, Nakashiro K, et al. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma. Cancer Sci. 2003;94:894–900.

    Article  CAS  PubMed  Google Scholar 

  7. Meyers PA, Healey JH, Chou AJ, Wexler LH, Merola PR, Morris CD, et al. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer. 2011;117:1736–44.

    Article  CAS  PubMed  Google Scholar 

  8. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.

    Article  PubMed  Google Scholar 

  9. Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283:1–5.

    Article  CAS  PubMed  Google Scholar 

  10. Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol. 2005;6:44–55.

    Article  CAS  PubMed  Google Scholar 

  11. Lieber MR. NHEJ and its backup pathways in chromosomal translocations. Nat Struct Mol Biol. 2010;17:393–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Noguchi T, Shibata T, Fumoto S, Uchida Y, Mueller W, Takeno S. DNA-PKcs expression in esophageal cancer as a predictor for chemoradiation therapeutic sensitivity. Ann Surg Oncol. 2002;9:1017–22.

    Article  PubMed  Google Scholar 

  13. Zhao HJ, Hosoi Y, Miyachi H, Ishii K, Yoshida M, Nemoto K, et al. DNA-dependent protein kinase activity correlates with Ku70 expression and radiation sensitivity in esophageal cancer cell lines. Clin Cancer Res. 2000;6:1073–8.

    CAS  PubMed  Google Scholar 

  14. Beskow C, Skikuniene J, Holgersson A, Nilsson B, Lewensohn R, Kanter L, et al. Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. Br J Cancer. 2009;101:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhuang L, Yu SY, Huang XY, Cao Y, Xiong HH. Potentials of DNA-PKcs, Ku80, and ATM in enhancing radiosensitivity of cervical carcinoma cells. Ai Zheng. 2007;26:724–9.

    CAS  PubMed  Google Scholar 

  16. Soderlund Leifler K, Queseth S, Fornander T, Askmalm MS. Low expression of Ku70/80, but high expression of DNA-PKcs, predict good response to radiotherapy in early breast cancer. Int J Oncol. 2010;37:1547–54.

    PubMed  Google Scholar 

  17. Auckley DH, Crowell RE, Heaphy ER, Stidley CA, Lechner JF, Gilliland FD, et al. Reduced DNA-dependent protein kinase activity is associated with lung cancer. Carcinogenesis. 2001;22:723–7.

    Article  CAS  PubMed  Google Scholar 

  18. Sirzen F, Nilsson A, Zhivotovsky B, Lewensohn R. DNA-dependent protein kinase content and activity in lung carcinoma cell lines: correlation with intrinsic radiosensitivity. Eur J Cancer. 1999;35:111–6.

    Article  CAS  PubMed  Google Scholar 

  19. Yan SS, Liu L, Liu ZG, Zeng MS, Song LB, Xia YF. Expression and clinical significance of DNA-PKcs in nasopharyngeal carcinoma. Ai Zheng. 2008;27:979–83.

    CAS  PubMed  Google Scholar 

  20. Lee SW, Cho KJ, Park JH, Kim SY, Nam SY, Lee BJ, et al. Expressions of Ku70 and DNA-PKcs as prognostic indicators of local control in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2005;62:1451–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hande KR. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer. 1998;34:1514–21.

    Article  CAS  PubMed  Google Scholar 

  22. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.

    Article  CAS  PubMed  Google Scholar 

  23. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10:886–95.

    Article  CAS  PubMed  Google Scholar 

  24. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  CAS  PubMed  Google Scholar 

  25. MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 2003;79:351–8.

    Article  CAS  PubMed  Google Scholar 

  26. Muller C, Christodoulopoulos G, Salles B, Panasci L. DNA-dependent protein kinase activity correlates with clinical and in vitro sensitivity of chronic lymphocytic leukemia lymphocytes to nitrogen mustards. Blood. 1998;92:2213–9.

    CAS  PubMed  Google Scholar 

  27. Muller C, Salles B. Regulation of DNA-dependent protein kinase activity in leukemic cells. Oncogene. 1997;15:2343–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ciszewski WM, Tavecchio M, Dastych J. Curtin NJ.DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res Treat. 2014;143:47–55.

    Article  CAS  PubMed  Google Scholar 

  29. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  30. Rengarajan T, Rajendran P, Nandakumar N, Balasubramanian MP, Nishigaki I. Cancer preventive efficacy of marine carotenoid fucoxanthin: cell cycle arrest and apoptosis. Nutrients. 2013;5:4978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Cao I, Duran A, Collado M, Carrascosa MJ, Martin-Caballero J, Flores JM, et al. Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep. 2005;6:577–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436:660–5.

    Article  CAS  PubMed  Google Scholar 

  33. Tian X, Chen G, Xing H, Weng D, Guo Y, Ma D. The relationship between the down-regulation of DNA-PKcs or Ku70 and the chemosensitization in human cervical carcinoma cell line HeLa. Oncol Rep. 2007;18:927–32.

    CAS  PubMed  Google Scholar 

  34. Friesen C, Uhl M, Pannicke U, Schwarz K, Miltner E, Debatin KM. DNA-ligase IV and DNA-protein kinase play a critical role in deficient caspases activation in apoptosis-resistant cancer cells by using doxorubicin. Mol Biol Cell. 2008;19:3283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (81172551) and the Shandong Technological Development Project (ZR2011HM037).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Li.

Additional information

Xin Li and Jiguang Tian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tian, J., Bo, Q. et al. Targeting DNA-PKcs increased anticancer drug sensitivity by suppressing DNA damage repair in osteosarcoma cell line MG63. Tumor Biol. 36, 9365–9372 (2015). https://doi.org/10.1007/s13277-015-3642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3642-5

Keywords

Navigation