Skip to main content

Advertisement

Log in

Targeting pancreatic cancer cells by a novel hydroxamate-based histone deacetylase (HDAC) inhibitor ST-3595

  • Research Article
  • Published:
Tumor Biology

Abstract

In the current study, we tested the potential anti-pancreatic cancer activity of a novel hydroxamate-based histone deacetylase (HDAC) inhibitor ST-3595. We showed that ST-3595 exerted potent anti-proliferative and cytotoxic activities against both established pancreatic cancer cell lines (PANC-1, AsPC-1, and Mia-PaCa-2), and patient-derived primary cancer cells. It was, however, generally safe to non-cancerous pancreatic epithelial HPDE6c7 cells. ST-3595-induced cytotoxicity to pancreatic cancer cells was associated with significant apoptosis activation. Reversely, the pan caspase inhibitor z-VAD-fmk and the caspase-8 inhibitor z-ITED-fmk alleviated ST-3595-mediated anti-pancreatic cancer activity in vitro. For the mechanism study, ST-3595 inhibited HDAC activity, and induced mitochondrial permeability transition pore (MPTP) opening in pancreatic cancer cells. Inhibition of MPTP, by cyclosporin A, sanglifehrin A, or by cyclophilin-D (Cyp-D) siRNA knockdown, dramatically inhibited ST-3595-induced pancreatic cancer cell apoptosis. Meanwhile, we found that a low concentration of ST-3595 dramatically sensitized gemcitabine-induced anti-pancreatic cancer cell activity in vitro. In vivo, ST-3595 oral administration inhibited PANC-1 xenograft growth in nude mice, and this activity was further enhanced when in combination with gemcitabine. In summary, the results of this study suggest that targeting HDACs by ST-3595 might represent as a novel and promising anti-pancreatic cancer strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Costello E, Neoptolemos JP. Pancreatic cancer in 2010: new insights for early intervention and detection. Nat Rev Gastroenterol Hepatol. 2011;8:71–3.

    Article  CAS  PubMed  Google Scholar 

  2. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.

    Article  CAS  PubMed  Google Scholar 

  3. Ducreux M, Boige V, Malka D. Treatment of advanced pancreatic cancer. Semin Oncol. 2007;34:S25–30.

    Article  CAS  PubMed  Google Scholar 

  4. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 2007;297:267–77.

    Article  CAS  PubMed  Google Scholar 

  5. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Article  Google Scholar 

  6. Blaszkowsky L. Treatment of advanced and metastatic pancreatic cancer. Front Biosci. 1998;3:E214–25.

    Article  CAS  PubMed  Google Scholar 

  7. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (hdacs): characterization of the classical hdac family. Biochem J. 2003;370:737–49.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001;1:194–202.

    Article  CAS  PubMed  Google Scholar 

  9. Feng W, Zhang B, Cai D, Zou X. Therapeutic potential of histone deacetylase inhibitors in pancreatic cancer. Cancer Lett. 2014;347:183–90.

    Article  CAS  PubMed  Google Scholar 

  10. Koutsounas I, Giaginis C, Theocharis S. Histone deacetylase inhibitors and pancreatic cancer: are there any promising clinical trials? World J Gastroenterol. 2013;19:1173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13:673–91.

    Article  CAS  PubMed  Google Scholar 

  12. Bu HQ, Liu DL, Wei WT, Chen L, Huang H, Li Y, et al. Oridonin induces apoptosis in sw1990 pancreatic cancer cells via p53- and caspase-dependent induction of p38 mapk. Oncol Rep. 2014;31:975–82.

    CAS  PubMed  Google Scholar 

  13. Min H, Xu M, Chen ZR, Zhou JD, Huang M, Zheng K, et al. Bortezomib induces protective autophagy through amp-activated protein kinase activation in cultured pancreatic and colorectal cancer cells. Cancer Chemother Pharmacol. 2014;74:167–76.

    Article  CAS  PubMed  Google Scholar 

  14. Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY, Zhou XZ, et al. P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol. 2014;229:1475–83.

    Article  CAS  PubMed  Google Scholar 

  15. Elrod JW, Molkentin JD. Physiologic functions of cyclophilin d and the mitochondrial permeability transition pore. Circ J. 2013;77:1111–22.

    Article  CAS  PubMed  Google Scholar 

  16. Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34:232–7.

    Article  CAS  PubMed  Google Scholar 

  17. Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84:153–66.

    Article  CAS  PubMed  Google Scholar 

  18. Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol. 2013;4:76.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eckel F, Schneider G, Schmid RM. Pancreatic cancer: a review of recent advances. Expert Opin Investig Drugs. 2006;15:1395–410.

    Article  CAS  PubMed  Google Scholar 

  20. Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis. 2007;12:835–40.

    Article  CAS  PubMed  Google Scholar 

  21. Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin a acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-d at a different site from cyclosporin a. J Biol Chem. 2002;277:34793–9.

    Article  CAS  PubMed  Google Scholar 

  22. Sullivan PG, Thompson MB, Scheff SW. Cyclosporin a attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol. 1999;160:226–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang Minjie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minjie, S., Defei, H., Zhimin, H. et al. Targeting pancreatic cancer cells by a novel hydroxamate-based histone deacetylase (HDAC) inhibitor ST-3595. Tumor Biol. 36, 9015–9022 (2015). https://doi.org/10.1007/s13277-015-3537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3537-5

Keywords

Navigation