Skip to main content
Log in

C-reactive protein inhibits expression of N-cadherin and ZEB-1 in murine colon adenocarcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Epithelial-to-mesenchymal transition (EMT) is thought to play a key role in cancer cell invasion and metastasis. We previously demonstrated that cancer cell migration is inhibited by C-reactive protein (CRP), which is widely used as a biomarker of inflammation, though its functions are not fully understood. In the present study, we evaluated the effect of CRP on cancer cell migration and expression of mesenchymal and epithelial markers of EMT and of related transcription factors. MCA-38 murine colon adenocarcinoma cells were subcutaneously inoculated into the backs of C57BL/6 mice, which also received 1 μg of recombinant mouse CRP or vehicle (phosphate-buffered saline) subcutaneously every 3 days for 4 weeks. Thereafter, the mice were sacrificed for evaluation using quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry. There was no statistical difference in tumor size between the control and CRP groups, but CRP dose-dependently inhibited MCA-38 cell migration. PCR analysis confirmed that CRP suppresses expression of N-cadherin (p < 0.01), a mesenchymal marker of EMT, and ZEB-1, an EMT-related transcription factor (p < 0.01). These findings suggest that CRP inhibits EMT in a MCA-38 tumor-bearing mouse model. CRP may thus be a potentially useful tool for preventing cancer progression through suppression of EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  CAS  PubMed  Google Scholar 

  2. Shook D, Keller R. Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev. 2003;120:1351–83.

    Article  CAS  PubMed  Google Scholar 

  3. Radisky DC. Epithelial–mesenchymal transition. J Cell Sci. 2005;118:4325–6.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.

    Article  CAS  PubMed  Google Scholar 

  5. Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tamura S, Shiozaki H, Miyata M, Kadowaki T, Inoue M, Matsui S, et al. Decreased E-cadherin expression is associated with haematogenous recurrence and poor prognosis in patients with squamous cell carcinoma of the oesophagus. Br J Surg. 1996;83:1608–14.

    Article  CAS  PubMed  Google Scholar 

  7. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO, et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 1994;54:3929–33.

    CAS  PubMed  Google Scholar 

  8. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;48:779–90.

    Article  Google Scholar 

  9. Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, et al. N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clin Cancer Res. 2004;10:4125–33.

    Article  CAS  PubMed  Google Scholar 

  10. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol. 1999;147:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  CAS  PubMed  Google Scholar 

  13. Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62:1613–8.

    CAS  PubMed  Google Scholar 

  14. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  CAS  PubMed  Google Scholar 

  15. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24:2375–85.

    Article  CAS  PubMed  Google Scholar 

  16. Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol. 2005;117:104–11.

    Article  CAS  PubMed  Google Scholar 

  17. Allin KH, Bojesen SE, Nordestgaard BG. Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol. 2009;27:2217–24.

    Article  CAS  PubMed  Google Scholar 

  18. Heikkilä K, Ebrahim S, Lawlor DA. A systematic review of the association between circulating concentrations of C reactive protein and cancer. J Epidemiol Community Health. 2007;61:824–33.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Motoyama S, Miura M, Hinai Y, Maruyama K, Usami S, Saito H, et al. CRP genetic polymorphism is associated with lymph node metastasis in thoracic esophageal squamous cell cancer. Ann Surg Oncol. 2009;16:2479–85.

    Article  PubMed  Google Scholar 

  20. Minamiya Y, Miura M, Hinai Y, Saito H, Ito M, Imai K, et al. The CRP 1846 T/T genotype is associated with a poor prognosis in patients with non-small cell lung cancer. Tumour Biol. 2010;31:673–9.

    Article  CAS  PubMed  Google Scholar 

  21. Terata K, Motoyama S, Kamata S, Hinai Y, Miura M, Sato Y, et al. Evaluation of the potential for lymph node metastasis using CRP 1846C > T genetic polymorphism in invasive breast cancer. Tumour Biol. 2014;35:5931–5.

    Article  CAS  PubMed  Google Scholar 

  22. Sasaki T, Motoyama S, Sato Y, Yoshino K, Saito H, Minamiya Y, et al. C-reactive protein inhibits cell migration and enhances expression of E-cadherin in murine squamous cell carcinoma cells. Akita J Med. 2012;39:45–51.

    CAS  Google Scholar 

  23. Sasaki T, Motoyama S, Sato Y, Yoshino K, Matsumoto G, Minamiya Y, et al. C-reactive protein inhibits lymphangiogenesis and resultant lymph node metastasis of squamous cell carcinoma in mice. Surgery. 2013;154:1087–92.

    Article  PubMed  Google Scholar 

  24. Kuribayashi K, Motoyama S, Sasaki T, Sato Y, Yoshino K, Wakita A, et al. C-reactive protein reduces the relative number of tumor-associated M2 macrophages and intratumoral angiogenesis in mice. Tohoku J Exp Med. 2014;233:249–55.

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res. 2006;66:4549–52.

    Article  CAS  PubMed  Google Scholar 

  26. Jechlinger M, Grunert S, Tamir IH, Janda E, Lüdemann S, Waerner T, et al. Expression profiling of epithelial plasticity in tumor progression. Oncogene. 2003;22:7155–69.

    Article  CAS  PubMed  Google Scholar 

  27. Larue L, Bellacosa A. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene. 2005;24:7443–54.

    Article  CAS  PubMed  Google Scholar 

  28. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  29. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    Article  CAS  PubMed  Google Scholar 

  30. Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, et al. Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res. 2004;566:9–20.

    Article  CAS  PubMed  Google Scholar 

  31. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  33. Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christofori G. New signals from the invasive front. Nature. 2006;441:444–50.

    Article  CAS  PubMed  Google Scholar 

  35. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.

    Article  CAS  PubMed  Google Scholar 

  36. Hazan RB, Kang L, Whooley BP, Borgen PI. N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun. 1997;4:399–411.

    Article  CAS  PubMed  Google Scholar 

  37. Nawrocki-Raby B, Gilles C, Polette M, Martinella-Catusse C, Bonnet N, Puchelle E, et al. E-cadherin mediates MMP down-regulation in highly invasive bronchial tumor cells. Am J Pathol. 2003;163:653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ho AT, Voura EB, Soloway PD, Watson KL, Khokha R. MMP inhibitors augment fibroblast adhesion through stabilization of focal adhesion contacts and up-regulation of cadherin function. J Biol Chem. 2001;276:40215–24.

    Article  CAS  PubMed  Google Scholar 

  39. Takeyama Y, Sato M, Horio M, Hase T, Yoshida K, Yokoyama T, et al. Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett. 2010;296:216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 2011;300:66–78.

    Article  CAS  PubMed  Google Scholar 

  41. Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci. 2009;66:773–87.

    Article  CAS  PubMed  Google Scholar 

  42. Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2008;68:2479–88.

    Article  CAS  PubMed  Google Scholar 

  43. Singh M, Spoelstra NS, Jean A, Howe E, Torkko KC, Clark HR, et al. ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod Pathol. 2008;21:912–23.

    Article  CAS  PubMed  Google Scholar 

  44. Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 2006;131:830–40.

    Article  CAS  PubMed  Google Scholar 

  45. Spoelstra NS, Manning NG, Higashi Y, Darling D, Singh M, Shroyer KR, et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res. 2006;66:3893–902.

    Article  CAS  PubMed  Google Scholar 

  46. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68:537–44.

    Article  CAS  PubMed  Google Scholar 

  47. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 2007;26:6979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsuji T, Ibaragi S, Hu GF. Epithelial–mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 2009;69:7135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms. Mitsuko Sato and Ms. Jun Kodama for their secretarial support.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kudo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudo, S., Saito, H., Motoyama, S. et al. C-reactive protein inhibits expression of N-cadherin and ZEB-1 in murine colon adenocarcinoma. Tumor Biol. 36, 7035–7043 (2015). https://doi.org/10.1007/s13277-015-3414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3414-2

Keywords

Navigation