Abstract
The significance of melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24) expression in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study was designed to investigate and evaluate the clinical significance of MDA-7/IL-24 expression in HNSCC by detecting expression by immunostaining in 131 HNSCC specimens. The function of MDA-7/IL-24 was investigated by real-time polymerase chain reaction (PCR) and Western blot in Ad5.mda-7-infected HNSCC cell lines. Our results showed that MDA-7/IL-24 was mainly expressed in the cytoplasm of HNSCC cells. MDA-7/IL-24 high patients presented with a favorable postoperative prognosis compared with MDA-7/IL-24 low patients, and high expression of MDA-7/IL-24 was significantly correlated with a lower incidence of second primary malignancies (SPMs) in the head and neck regions. In vitro assays showed that high expression of MDA-7/IL-24 could upregulate the expression of the epithelial terminal differentiation markers cytokeratin (KRT) 1, KRT4, KRT13, phosphorylated endoplasmic reticulum stress protein (p)-EIF2a, and the apoptosis-related protein cleaved caspase-3. It also downregulated the epithelial proliferative markers KRT5, KRT14, Integrin β4, and anti-apoptosis protein Bcl-2, which might be partially involved in the underlying mechanisms of Ad.mda-7-mediated HNSCC differentiation and apoptosis. Our results indicate that MDA-7/IL-24 can be a prognostic biomarker and an indicator of second primary malignancies (SPM) in HNSCC.




Similar content being viewed by others
References
Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. doi:10.3322/canjclin.55.2.74.
Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer. 2013;133(9):2013–23. doi:10.1002/ijc.28112.
Leon X, Quer M, Diez S, Orus C, Lopez-Pousa A, Burgues J. Second neoplasm in patients with head and neck cancer. Head Neck. 1999;21(3):204–10.
Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004;22:929–79. doi:10.1146/annurev.immunol.22.012703.104622.
Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995;11(12):2477–86.
Ellerhorst JA, Prieto VG, Ekmekcioglu S, Broemeling L, Yekell S, Chada S, et al. Loss of MDA-7 expression with progression of melanoma. J Clin Oncol. 2002;20(4):1069–74.
Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS, Fisher PB. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci U S A. 1996;93(17):9160–5.
Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC, et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci U S A. 1998;95(24):14400–5.
Wei L, Wang Z, Cui T, Yi F, Bu Y, Ding S, et al. Proteomic analysis of cervical cancer cells treated with adenovirus-mediated MDA-7. Cancer Biol Ther. 2008;7(4):510–6.
Hamed HA, Yacoub A, Park MA, Eulitt PJ, Dash R, Sarkar D, et al. Inhibition of multiple protective signaling pathways and Ad.5/3 delivery enhances mda-7/IL-24 therapy of malignant glioma. Mol Ther. 2010;18(6):1130–42.
Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 2002;21(29):4558–66. doi:10.1038/sj.onc.1205553.
Bhutia SK, Das SK, Kegelman TP, Azab B, Dash R, Su ZZ, et al. mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer. J Cell Physiol. 2012;227(5):1805–13. doi:10.1002/jcp.22904.
Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, et al. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs. 2010;21(8):725–31. doi:10.1097/CAD.0b013e32833cfbe1.
Feng Z, Li JN, Wang L, Pu YF, Wang Y, Guo CB. The prognostic value of glycerol-3-phosphate dehydrogenase 1-like expression in head and neck squamous cell carcinoma. Histopathology. 2014;64(3):348–55. doi:10.1111/his.12258.
Warren S, Gates O. Multiple primary malignant tumors. A survey of the literature and a statistical study. Am J Cancer. 1932;16:1358–414.
Morris LG, Sikora AG, Patel SG, Hayes RB, Ganly I. Second primary cancers after an index head and neck cancer: subsite-specific trends in the era of human papillomavirus-associated oropharyngeal cancer. J Clin Oncol : Off J Am Soc Clin Oncol. 2011;29(6):739–46. doi:10.1200/JCO.2010.31.8311.
Ishikawa S, Nakagawa T, Miyahara R, Kawano Y, Takenaka K, Yanagihara K, et al. Expression of MDA-7/IL-24 and its clinical significance in resected non-small cell lung cancer. Clin Cancer Res : Off J Am Assoc Cancer Res. 2005;11(3):1198–202.
Wang L, Wang Y, Bian H, Pu Y, Guo C. Molecular characteristics of homologous salivary adenoid cystic carcinoma cell lines with different lung metastasis ability. Oncol Rep. 2013;30(1):207–12. doi:10.3892/or.2013.2460.
Vikram B. Changing patterns of failure in advanced head and neck cancer. Arch Otolaryngol. 1984;110(9):564–5.
Garavello W, Ciardo A, Spreafico R, Gaini RM. Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2006;132(7):762–6. doi:10.1001/archotol.132.7.762.
Rennemo E, Zatterstrom U, Boysen M. Impact of second primary tumors on survival in head and neck cancer: an analysis of 2,063 cases. Laryngoscope. 2008;118(8):1350–6. doi:10.1097/MLG.0b013e318172ef9a.
Lin K, Patel SG, Chu PY, Matsuo JM, Singh B, Wong RJ, et al. Second primary malignancy of the aerodigestive tract in patients treated for cancer of the oral cavity and larynx. Head Neck. 2005;27(12):1042–8. doi:10.1002/hed.20272.
Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.
Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–33. doi:10.1007/s00418-008-0435-6.
Knosel T, Emde V, Schluns K, Schlag PM, Dietel M, Petersen I. Cytokeratin profiles identify diagnostic signatures in colorectal cancer using multiplex analysis of tissue microarrays. Cell Oncol : Off J Int Soc Cell Oncol. 2006;28(4):167–75.
Vaidya MM, Kanojia D. Keratins: markers of cell differentiation or regulators of cell differentiation? J Biosci. 2007;32(4):629–34.
Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980;19(4):1033–42.
Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis. FASEB J : Off Publ Fed Am Soc Exp Biol. 2010;24(11):4133–52. doi:10.1096/fj.09-151449.
Lebedeva IV, Su ZZ, Vozhilla N, Chatman L, Sarkar D, Dent P, et al. Mechanism of in vitro pancreatic cancer cell growth inhibition by melanoma differentiation-associated gene-7/interleukin-24 and perillyl alcohol. Cancer Res. 2008;68(18):7439–47. doi:10.1158/0008-5472.CAN-08-0072.
Yacoub A, Park MA, Gupta P, Rahmani M, Zhang G, Hamed H, et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells. Mol Cancer Ther. 2008;7(2):297–313. doi:10.1158/1535-7163.MCT-07-2166.
Yacoub A, Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, et al. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res. 2010;70(3):1120–9. doi:10.1158/0008-5472.CAN-09-4043.
Gupta P, Walter MR, Su ZZ, Lebedeva IV, Emdad L, Randolph A, et al. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res. 2006;66(16):8182–91. doi:10.1158/0008-5472.CAN-06-0577.
Yacoub A, Liu R, Park MA, Hamed HA, Dash R, Schramm DN, et al. Cisplatin enhances protein kinase R-like endoplasmic reticulum kinase- and CD95-dependent melanoma differentiation-associated gene-7/interleukin-24-induced killing in ovarian carcinoma cells. Mol Pharmacol. 2010;77(2):298–310. doi:10.1124/mol.109.061820.
Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, et al. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003;22(54):8758–73. doi:10.1038/sj.onc.12068911206891.
Acknowledgments
This study was supported by the 985 special fund for multi-hospitals’ phase III clinical trial in Peking University, the National High Technology Research and Development Program of China (no. 2009AA045201 and no. 2012AA041606), the Special fund for Capital Medical Development (no. 2011-4025-02), and the China Postdoctoral Science Foundation funded project (no. 2013 M530495). The source of replication-deficient adenoviruses used in this study was constructed by the Vector Gene Technology Company Ltd.
Conflicts of interest
None
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(JPEG 200 kb)
Rights and permissions
About this article
Cite this article
Wang, L., Feng, Z., Wu, H. et al. Melanoma differentiation-associated gene-7/interleukin-24 as a potential prognostic biomarker and second primary malignancy indicator in head and neck squamous cell carcinoma patients. Tumor Biol. 35, 10977–10985 (2014). https://doi.org/10.1007/s13277-014-2392-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13277-014-2392-0