Skip to main content

Advertisement

Log in

An increased risk of ovarian cancer associated with polymorphism in BRCC5 gene in Caucasian populations

  • Research Article
  • Published:
Tumor Biology

Abstract

Several reports on the association between the BRCC5 gene polymorphism and ovarian cancer risk have been published recently, but the estimates of the risk vary widely. We thus performed a meta-analysis in an effort to determine the association. To identify the eligible studies, we searched the PubMed, Embase, and CNKI databases, and reviewed all original studies retrieved as well as their citations. The risk of ovarian cancer was estimated using odds ratio (OR) and its 95 % confidence interval (CI). Meta-analysis of seven comparisons revealed an obvious rise in the risk of ovarian cancer under the CC vs. GG contrast model (OR = 1.52, 95 % CI = 1.07–2.16, P OR = 0.020). A similar increase was also indicated in the CC vs. GC + GG model (OR = 2.10, 95 % CI = 1.51–2.93, P OR < 0.001). Our meta-analysis indicates that the BRCC5 polymorphism may be a candidate modifier of ovarian cancer risk in Caucasians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23(5):687–96.

    Article  CAS  PubMed  Google Scholar 

  2. Helleday T. Pathways for mitotic homologous recombination in mammalian cells. Mutat Res. 2003;532(1–2):103–15.

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto A et al. Cell cycle-dependent expression of the mouse Rad51 gene in proliferating cells. Mol Gen Genet. 1996;251(1):1–12.

    CAS  PubMed  Google Scholar 

  4. Yuan SS, Chang HL, Lee EY. Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(−/−) and c-Abl(−/−) cells. Mutat Res. 2003;525(1–2):85–92.

    Article  CAS  PubMed  Google Scholar 

  5. Vispe S, Defais M. Mammalian Rad51 protein: a RecA homologue with pleiotropic functions. Biochimie. 1997;79(9–10):587–92.

    Article  CAS  PubMed  Google Scholar 

  6. Baumann P, West SC. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 1998;23(7):247–51.

    Article  CAS  PubMed  Google Scholar 

  7. Tsuzuki T et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci U S A. 1996;93(13):6236–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lim DS, Hasty P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol. 1996;16(12):7133–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Lambert S, Lopez BS. Inactivation of the RAD51 recombination pathway stimulates UV-induced mutagenesis in mammalian cells. Oncogene. 2002;21(25):4065–9.

    Article  CAS  PubMed  Google Scholar 

  10. Thacker J. The RAD51 gene family, genetic instability and cancer. Cancer Lett. 2005;219(2):125–35.

    Article  CAS  PubMed  Google Scholar 

  11. Hasselbach L et al. Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol. 2005;26(6):589–98.

    CAS  PubMed  Google Scholar 

  12. Webb PM et al. Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(2):319–23.

    Article  CAS  PubMed  Google Scholar 

  13. Auranen A et al. Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer. 2005;117(4):611–8.

    Article  CAS  PubMed  Google Scholar 

  14. Jakubowska A et al. The RAD51 135 G > C polymorphism modifies breast cancer and ovarian cancer risk in Polish BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev. 2007;16(2):270–5.

    Article  CAS  PubMed  Google Scholar 

  15. Smolarz B et al. Association between polymorphisms of the DNA repair gene RAD51 and ovarian cancer. Pol J Pathol. 2013;64(4):290–5.

    Article  CAS  PubMed  Google Scholar 

  16. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

    CAS  PubMed  Google Scholar 

  17. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  18. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  19. Egger M et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hernandez JL, Weir BS. A disequilibrium coefficient approach to Hardy-Weinberg testing. Biometrics. 1989;45(1):53–70.

    Article  CAS  PubMed  Google Scholar 

  21. Levy-Lahad E et al. A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci U S A. 2001;98(6):3232–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Vuorela M et al. Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility. Breast Cancer Res Treat. 2011;130(3):1003–10.

    Article  CAS  PubMed  Google Scholar 

  23. Nagle CM et al. Ovarian cancer survival and polymorphisms in hormone and DNA repair pathway genes. Cancer Lett. 2007;251(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  24. Wang WW et al. A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev. 2001;10(9):955–60.

    CAS  PubMed  Google Scholar 

  25. Romanowicz-Makowska H et al. A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and ovarian cancer risk in Polish women. Eur J Gynaecol Oncol. 2012;33(4):406–10.

    CAS  PubMed  Google Scholar 

  26. Cheng D et al. RAD51 Gene 135G/C polymorphism and the risk of four types of common cancers: a meta-analysis. Diagn Pathol. 2014;9(1):18.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Parshad R et al. Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer. 1996;74(1):1–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wang WTM, Doody M, Tarone RE, Struewing JP. A single nucleotide polymorphism in the 5-prime-UTR of RAD51 is associated with the risk of breast cancer among BRCA1/2 mutation carriers [abstract]. Am J Hum Genet. 1999;65:A22.

    Google Scholar 

  29. Ford D et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Li, Y., Luo, RY. et al. An increased risk of ovarian cancer associated with polymorphism in BRCC5 gene in Caucasian populations. Tumor Biol. 35, 9179–9184 (2014). https://doi.org/10.1007/s13277-014-2135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2135-2

Keywords

Navigation