Skip to main content

Advertisement

Log in

Glucose-regulated protein 94 modulates the therapeutic efficacy to taxane in cervical cancer cells

  • Research Article
  • Published:
Tumor Biology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cervical cancer is an important health issue for women worldwide, and the endoplasmic reticulum stress pathway is important for determining the chemotherapeutic response to cancer. However, the role of glucose-regulated protein 94 (GRP94) in taxane therapy for cervical cancer remains unclear. In this study, we generated GRP94 knockdown (GRP94-KD) Hela cells using short hairpin RNAs and found that GRP94-KD cells were resistant to taxane treatment in an MTT assay. Scrambled control cells demonstrated higher levels of apoptosis when treated with taxanes in comparison to GRP94-KD cells, as determined by cell cycle profiling, 4′,6-diamidino-2-phenylindole staining, and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. Caspase 3 and caspase 7 activity was also higher in scrambled control cells treated with taxane in comparison to GRP94-KD cells. Moreover, we found that depletion of GRP94 altered the levels of the apoptosis-related proteins Bcl2 and Bad, leading to sensitivity to taxane. Exposure to taxane also induced the expression of Bad in scrambled cells but not in GRP94-KD cells. In addition, the expression of Bcl2 was increased dramatically in GRP94-KD cells, whereas only a small increase was observed in scrambled cells. Therefore, we conclude that silencing GRP94 may increase resistance to taxane treatment in cervical cancer cells by altering the activation of the apoptosis pathway. In addition, GRP94 may represent a key biomarker for determining the therapeutic efficacy of taxane treatment in cervical cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GRP94:

Glucose-regulated protein 94

ER:

Endoplasmic reticulum

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Bocker W. Who classification of breast tumors and tumors of the female genital organs: pathology and genetics. Verh Dtsch Ges Pathol. 2002;86:116–9.

    CAS  PubMed  Google Scholar 

  3. Benedet JL, Odicino F, Maisonneuve P, et al. Carcinoma of the cervix uteri. Int J Gynaecol Obstet. 2003;83 Suppl 1:41–78.

    Article  PubMed  Google Scholar 

  4. Kesic V. Management of cervical cancer. Eur J Surg Oncol. 2006;32:832–7.

    Article  CAS  PubMed  Google Scholar 

  5. Cadron I, Van Gorp T, Amant F, Leunen K, Neven P, Vergote I. Chemotherapy for recurrent cervical cancer. Gynecol Oncol. 2007;107:S113–118.

    Article  CAS  PubMed  Google Scholar 

  6. Pearl ML, Johnston CM, McMeekin DS. A phase II study of weekly docetaxel for patients with advanced or recurrent cancer of the cervix. Gynecol Obstet Invest. 2007;64:193–8.

    CAS  PubMed  Google Scholar 

  7. Kudelka AP, Winn R, Edwards CL, et al. Activity of paclitaxel in advanced or recurrent squamous cell cancer of the cervix. Clin Cancer Res. 1996;2:1285–8.

    CAS  PubMed  Google Scholar 

  8. Pectasides D, Kamposioras K, Papaxoinis G, Pectasides E. Chemotherapy for recurrent cervical cancer. Cancer Treat Rev. 2008;34:603–13.

    Article  CAS  PubMed  Google Scholar 

  9. Vallejo CT, Machiavelli MR, Perez JE, et al. Docetaxel as neoadjuvant chemotherapy in patients with advanced cervical carcinoma. Am J Clin Oncol. 2003;26:477–82.

    Article  CAS  PubMed  Google Scholar 

  10. Bando Y, Katayama T, Kasai K, Taniguchi M, Tamatani M, Tohyama M. Grp94 (94 kDa glucose-regulated protein) suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur J Neurosci. 2003;18:829–40.

    Article  PubMed  Google Scholar 

  11. Chang JT, Chan SH, Lin CY, et al. Differentially expressed genes in radioresistant nasopharyngeal cancer cells: Gp96 and GDF15. Mol Cancer Ther. 2007;6:2271–9.

    Article  CAS  PubMed  Google Scholar 

  12. Di Michele M, Marcone S, Cicchillitti L, et al. Glycoproteomics of paclitaxel resistance in human epithelial ovarian cancer cell lines: towards the identification of putative biomarkers. J Proteome. 2010;73:879–98.

    Article  Google Scholar 

  13. Zheng HC, Takahashi H, Li XH, et al. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol. 2008;39:1042–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lim SO, Park SG, Yoo JH, et al. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis b virus-related hepatocellular carcinomas and dysplastic nodules. World J gastroenterol WJG. 2005;11:2072–9.

    CAS  Google Scholar 

  15. Neubauer H, Clare SE, Kurek R, et al. Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis. 2006;27:1840–52.

    Article  CAS  PubMed  Google Scholar 

  16. Xing X, Lai M, Wang Y, Xu E, Huang Q. Overexpression of glucose-regulated protein 78 in colon cancer. Clin Chim Acta. 2006;364:308–15.

    Article  CAS  PubMed  Google Scholar 

  17. Lee AS. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci. 2001;26:504–10.

    Article  CAS  PubMed  Google Scholar 

  18. Oloumi A, Lam W, Banath JP, Olive PL. Identification of genes differentially expressed in v79 cells grown as multicell spheroids. Int J Radiat Biol. 2002;78:483–92.

    Article  CAS  PubMed  Google Scholar 

  19. Dey A, Kessova IG, Cederbaum AI. Decreased protein and mRNA expression of ER stress proteins GRP78 and GRP94 in HepG2 cells over-expressing CYP2E1. Arch Biochem Biophys. 2006;447:155–66.

    Article  CAS  PubMed  Google Scholar 

  20. Bruneel A, Labas V, Mailloux A, et al. Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. Proteomics. 2005;5:3876–84.

    Article  CAS  PubMed  Google Scholar 

  21. Lu Q, Harrington EO, Newton J, Jankowich M, Rounds S. Inhibition of ICMT induces endothelial cell apoptosis through GRP94. Am J Respir Cell Mol Biol. 2007;37:20–30.

    Article  CAS  PubMed  Google Scholar 

  22. Reddy RK, Lu J, Lee AS. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J Biol Chem. 1999;274:28476–83.

    Article  CAS  PubMed  Google Scholar 

  23. Wang SK, Liang PH, Astronomo RD, et al. Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci U S A. 2008;105:3690–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sowinski S, Jolly C, Berninghausen O, et al. Membrane nanotubes physically connect t cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10:211–9.

    Article  CAS  PubMed  Google Scholar 

  25. Chiou JF, Tai CJ, Huang MT, et al. Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:603–12.

    Article  PubMed  Google Scholar 

  26. Chang YJ, Chiu CC, Wu CH, et al. Glucose-regulated protein 78 (GRP78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol. 2010;17:1703–9.

    Article  PubMed  Google Scholar 

  27. Wei PL, Chang YJ, Ho YS, et al. Tobacco-specific carcinogen enhances colon cancer cell migration through alpha7-nicotinic acetylcholine receptor. Ann Surg. 2009;249:978–85.

    Article  PubMed  Google Scholar 

  28. Chung CT, Carlson RW. Goals and objectives in the management of metastatic breast cancer. Oncologist. 2003;8:514–20.

    Article  PubMed  Google Scholar 

  29. Randazzo M, Terness P, Opelz G, Kleist C. Active-specific immunotherapy of human cancers with the heat shock protein GP96-revisited. Int J Cancer. 2012;130:2219–31.

    Article  CAS  PubMed  Google Scholar 

  30. Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol. 2005;6:593–9.

    Article  CAS  PubMed  Google Scholar 

  31. Blachere NE, Udono H, Janetzki S, Li Z, Heike M, Srivastava PK. Heat shock protein vaccines against cancer. J Immunother Emphasis Tumor Immunol. 1993;14:352–6.

    Article  CAS  PubMed  Google Scholar 

  32. Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A. 1986;83:3407–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Srivastava PK, Das MR. The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. Int J Cancer. 1984;33:417–22.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science. 1997;278:1966–8.

    Article  CAS  PubMed  Google Scholar 

  35. Kubota H, Suzuki T, Lu J, et al. Increased expression of GRP94 protein is associated with decreased sensitivity to X-rays in cervical cancer cell lines. Int J Radiat Biol. 2005;81:701–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Chi-Mei Medical Center and the Taipei Medical University Research Grant (101CM-TMU-12-2) and National Science Council (NSC101-2314-B-038-016-MY3).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jia Chang.

Additional information

Cheng-Jeng Tai and Jin-Wun Wang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, CJ., Wang, JW., Su, HY. et al. Glucose-regulated protein 94 modulates the therapeutic efficacy to taxane in cervical cancer cells. Tumor Biol. 35, 403–410 (2014). https://doi.org/10.1007/s13277-013-1056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1056-9

Keywords

Navigation