Skip to main content

Advertisement

Log in

Overexpression of G6PD is associated with poor clinical outcome in gastric cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

This study aims to investigate the expression and significance of glucose-6-phosphate dehydrogenase (G6PD) in human gastric cancer progression and prognosis. Using immunohistochemistry and real-time RT-PCR assay, we identified abnormally elevated expression of G6PD in gastric cancer tissues compared to paired normal stomach mucosa tissues in 24 patients (p < 0.05). In order to investigate the correlations between G6PD and the clinicopathological features of gastric cancer, the expression of G6PD in 167 patients with gastric cancer were detected by immunohistochemistry, and the results showed that overexpression of G6PD was associated with the size of tumor (p = 0.039), depth of invasion (p = 0.039), lymph node metastasis (p = 0.044), distant metastasis (p = 0.003), TNM stage (p = 0.030), and survival rate (p = 0.010). Further, Cox multivariates analysis indicated that G6PD expression level was an independent prognostic factor for patients after radical resection (p = 0.013). In conclusion, overexpression of G6PD is closely related to progression of gastric cancer, and might be regarded as an independent predictor of poor prognosis for gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garcia M, Jemal A, Ward EM, et al. Global cancer facts and figures 2007. Atlanta: American Cancer Society; 2007.

    Google Scholar 

  2. Catalano V, Labianca R, Beretta GD, et al. Gastric cancer. Crit Rev Oncol Hematol. 2009;71(2):127–64.

    Article  PubMed  Google Scholar 

  3. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  4. Ho HY, Cheng ML, Chiu DT. Glucose-6-phosphate dehydrogenase—from oxidative stress to cellular functions and degenerative diseases. Redox Rep. 2007;12:109–18.

    Article  PubMed  CAS  Google Scholar 

  5. Kuo W, Lin J, Tang TK. Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3 T3 cells and induces tumors in nude mice. Int J Cancer. 2000;85:857–64.

    Article  PubMed  CAS  Google Scholar 

  6. Batetta B, Bonatesta RR, Sanna F, Putzolu M, Mulas MF, Collu M, et al. Cell growth and cholesterol metabolism in human glucose-6-phosphate dehydrogenase deficient lymphomononuclear cells. Cell Prolif. 2002;35:143–54.

    Article  PubMed  CAS  Google Scholar 

  7. Li D, Zhu Y, Tang Q, Huiru Lu, Li H, Yang Y, et al. A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer Biother Radiopharm. 2009;24:81–90.

    Article  PubMed  CAS  Google Scholar 

  8. Ohl F, Jung M, Radonić A, Sachs M, Loening SA, Jung K. Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J Urol. 2006;175:1915–20.

    Article  PubMed  CAS  Google Scholar 

  9. Langbein S, Frederiks WM, zur Hausen A, Popa J, Lehmann J, Weiss C, et al. Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer. 2008;122:2422–8.

    Article  PubMed  CAS  Google Scholar 

  10. Lewandowicz GM, Britt P, Elgie AW, Williamson CJ, Coley HM, Hall AG, et al. Cellular gluathione content in vitro chemo response and the effect of BSO modulation in samples derived from patients with advanced ovarian cancer. Gynecol Oncol. 2002;85:298.

    Article  PubMed  CAS  Google Scholar 

  11. Frederiks WM, van Marle J, van Oven C, Comin-Anduix B, Cascante M. Improved localization of glucose-6-phosphate dehydrogenase activity in cells with 5-cyano-2, 3-ditolyl-tetrazolium chloride as fluorescent redox dye reveals its cell cycle-dependent regulation. J Histochem Cytochem. 2006;54:47–52.

    Article  PubMed  CAS  Google Scholar 

  12. Bokun R, Bakotin J, Milasinovic DD. Semiquantitative cytochemical estimation of glucose-6-phosphate dehydrogenase activity in benign diseases and carcinoma of the breast. Acta Cytol. 1987;31:249–52.

    PubMed  CAS  Google Scholar 

  13. Hughes EC. The effect of enzymes upon metabolism, storage, and release of carbohydrates in normal and abnormal endometria. Cancer. 1976;38:487–502.

    Article  PubMed  CAS  Google Scholar 

  14. Dutu R, Nedelea M, Veluda G, Burcuket V. Cytoenzymologic investigations on carcinomas of the cervix uteri. Acta Cytol. 1980;24:160–6.

    PubMed  CAS  Google Scholar 

  15. Ohl F, Jung M, Xu C, Stephan C, Rabien A, Burkhardt M, et al. Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization? J Mol Med. 2005;83:1014–24.

    Article  PubMed  CAS  Google Scholar 

  16. Zampella EJ, Bradley EL, Pretlow IG. Glucose-6-phosphate dehydrogenase: a possible clinical indicator for prostatic carcinoma. Cancer. 1982;49:384–7.

    Article  PubMed  CAS  Google Scholar 

  17. Dessi S, Batetta B, Cherchi R, Onnis R, Pisano M, Pani P. Hexomonophosphate shunt enzymes in lung tumours from normal and glucose-6-phosphate dehydrogenase-deficient subjects. Oncology. 1988;45:287–91.

    Article  PubMed  CAS  Google Scholar 

  18. Li R, Jiang C. Expression of G6PD protein in gliomas and its correlation with glioma grades. Heilongjiang Med J. 2008;32:573–5.

    Google Scholar 

  19. Sobin L, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 7th ed. New York: Wiley; 2009.

    Google Scholar 

  20. Kekec Y, Paydas S, Tuli A, Zorludemir S, Sakman G, Seydaoglu G. Antioxidant enzyme levels in cases with gastrointestinal cancer. Eur J Intern Med. 2009;20(4):403–6.

    Article  PubMed  CAS  Google Scholar 

  21. Mathupala SP, Rempel A, Pedersen PL. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to acritical role for type II hexokinase. J Bioenerg Biomembr. 1997;29:339–43.

    Article  PubMed  CAS  Google Scholar 

  22. Vizán P, Alcarraz-Vizán G, Díaz-Moralli S, Solovjeva ON, Frederiks WM, Cascante M. Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. Int J Cancer. 2009;124:2789–96.

    Article  PubMed  Google Scholar 

  23. Chen H, Yue JX, Yang SH, Ding H, Zhao RW, Zhang S. Over expression of transketolase-like gene1 is associated with cell proliferation in uterine cervix cancer. J Exp Clin Cancer Res. 2009;28:43.

    Article  PubMed  CAS  Google Scholar 

  24. Dessì S, Batetta B, Pani P, Barra S, Miranda F, Puxeddu P. Glucose-6-phosphate dehydrogenase (G6PD) activity in tumoral tissues of GGPD-deficient subjects affected by larynx carcinoma. Cancer Lett. 1990;53:159–62.

    Article  PubMed  Google Scholar 

  25. Yuan W, Shaobin Wu, Guo J, Chen Z, Jie Ge Pu, Yang Bin Hu, et al. Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. Cancer Biol Ther. 2010;9(9):710–6.

    Article  PubMed  CAS  Google Scholar 

  26. Tian Wang-Ni, Braunstein LD, Pang J, Stuhlmeier KM, Xi Q-C, Tian X, et al. Stanton. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem. 1998;273:10609–17.

    Article  PubMed  CAS  Google Scholar 

  27. Forteleoni G, Argiolas L, Farris A, Ferraris AM, Gaetani GF, Meloni T. G6PD deficiency and breast cancer. Tumori. 1988;74:665–7.

    PubMed  CAS  Google Scholar 

  28. Pisano M, Cocco P, Cherchi R, Onnis R, Cherchi P. Glucose-6-phosphate dehydrogenase deficiency and lung cancer: a hospital based case-control study. Tumori. 1991;77:12–5.

    PubMed  CAS  Google Scholar 

  29. Tassi S, Carta S, Delfino L, Caorsi R, Martini A, Gattorno M, et al. Altered redox state of monocytes from cryopyrinassociated periodic syndromes causes accelerated IL-1β secretion. Proc Natl Acad Sci USA. 2010;107(21):9789–94.

    Article  PubMed  CAS  Google Scholar 

  30. Park J, Choe SS, Choi AH, Kim KH, Yoon MJ, Suganami T, et al. Increase in glucose-6-phosphate dehydrogenase in adipocytes stimulates oxidative stress and inflammatory signals. Diabetes. 2006;55(11):2939–49.

    Article  PubMed  CAS  Google Scholar 

  31. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23:599–622.

    Article  PubMed  CAS  Google Scholar 

  32. Wells PG, Bhuller Y, Chen CS, Jeng W, Kasapinovic S, Kennedy JC, et al. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol. 2005;207:354–66.

    Article  PubMed  Google Scholar 

  33. Polimeni M, Voena C, Kopecka J, Riganti C, Pescarmona G, Bosia A, et al. Modulation of doxorubicin resistance by the glucose 6-phosphate dehydrogenase activity. Biochem J. 2011;439(1):141–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hai Long for his helpful comments and Kai Wang for revising the language of this manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yuan, W., Chen, Z. et al. Overexpression of G6PD is associated with poor clinical outcome in gastric cancer. Tumor Biol. 33, 95–101 (2012). https://doi.org/10.1007/s13277-011-0251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0251-9

Keywords

Navigation