Skip to main content
Log in

Integrative toxicogenomic analysis for elucidating molecular interference on DNA integrity and repair system with underlying signaling networks in response to low-level lead acetate in rat liver model

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Lead (Pb) is widely used in consumer products as an alloy and pigment despite its well-known serious toxic effects. Pb absorbed through the gastrointestinal and respiratory system flows through the bloodstream and accumulates in the brain, bone and liver. Especially, the liver is well known as an important organ for detoxification, and a number of prior studies have confirmed the alteration of diverse biological mechanisms caused by long-term Pb exposure in the liver. In this study, we investigated the genotoxic potential of Pb on nuclear DNA and repair capacity using comet and AP endonuclease activity assay, respectively in rat liver tissue at long-term and low-level exposure. Significant extent of DNA break damages and the impairment of enzymatic repair activities were observed in the Pb exposed group, in comparison to the control group. In addition, using integrative toxicogenomic approach we comprehensively analyzed the Pb-induced gene alteration in genome-wide scale and DNA excision repair-focused biological networks using microarray and pathway analysis, respectively. Based on integrative approach, we suggest that genotoxic effects of low-level Pb exposure are, in part, involved in the enhancement of DNA strand break and impairment of repair activity, with complex molecular signaling pathways. Our study provides perspective on novel biomarker responsible for Pb-induced hepatotoxicity at long-term and low-dose exposure, which would be useful for further development of gene-targeted therapeutic strategies and/or natural chemo-preventive agents for effective reduction of the Pb toxicity in both occupational and environmental perspectives. The exact mechanism of genotoxicity in liver exposed to low-level Pb will be further warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flora, G., Gupta, D. & Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol 5:47–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abdou, H. M. & Hassan, M. A. Protective Role of Omega-3 Polyunsaturated Fatty Acid against Lead Acetate-Induced Toxicity in Liver and Kidney of Female Rats. Biomed Res Int 2014:435857 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abadin, H. et al. in Toxicological Profile for Lead pp. 582 (US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Atlanta, Georgia, 2007.

    Google Scholar 

  4. Kalia, K. & Flora, S. J. Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47:1–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Honchel, R., Marsano, L., Cohen, D., Shedlofsky, S. & McClain, C. J. Lead enhances lipopolysaccharide and tumor necrosis factor liver injury. J Lab Clin Med 117:202–208 (1991).

    CAS  PubMed  Google Scholar 

  6. Vyskocil, A. et al. Dose-related proximal tubular dysfunction in male rats chronically exposed to lead. J Appl Toxicol 9:395–399 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, M. R. et al. Lead-induced Hepatotoxicity and Evaluation of Certain Anti-stress Adaptogens in Poultry. Toxicol Int 18:62–66 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ozkaya, A., Sahin, Z., Dag, U. & Ozkaraca, M. Effects of Naringenin on Oxidative Stress and Histopathological Changes in the Liver of Lead Acetate Administered Rats. J Biochem Mol Toxicol 30:243–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Dos Santos, C. R., Cavalcante, A. L., Hauser-Davis, R. A., Lopes, R. M. & Da Costa Mattos Rde, C. Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia. Ecotoxicol Environ Saf 129:250–256 (2016).

    Article  PubMed  Google Scholar 

  10. Patra, R. C., Rautray, A. K. & Swarup, D. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration. Vet Med Int 2011:457327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matović, V., Buha, A., Ðukić-Ćosić, D. & Bulat, Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140 (2015).

    Article  PubMed  Google Scholar 

  12. Patra, R. C., Swarup, D. & Dwivedi, S. K. Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162:81–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Sandhir, R. & Gill, K. D. Effect of lead on lipid peroxidation in liver of rats. Biol Trace Elem Res 48:91–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, J. et al. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol 46:1488–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, C. M., Ma, J. Q. & Sun, Y. Z. Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Exp Toxicol Pathol 64:575–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Ahamed, M. & Siddiqui, M. K. Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383:57–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Douki, T. et al. DNA alkylation by 4,5-dioxovaleric acid, the final oxidation product of 5-aminolevulinic acid. Chem Res Toxicol 11:150–157 (1998).

    Article  PubMed  Google Scholar 

  18. Kryston, T. B., Georgiev, A. B., Pissis, P. & Georgakilas, A. G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Columbano, A. et al. Cell proliferation and promotion of rat liver carcinogenesis: different effect of hepatic regeneration and mitogen induced hyperplasia on the development of enzyme-altered foci. Carcinogenesis 11:771–776 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Ledda-Columbano, G. M., Columbano, A. & Pani, P. Lead and liver cell proliferation. Effect of repeated administrations. Am J Pathol 113:315–320 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Roy, N. K. & Rossman, T. G. Mutagenesis and comutagenesis by lead compounds. Mutat Res 298:97–103 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Hartwig, A. Role of DNA repair inhibition in leadand cadmium-induced genotoxicity: a review. Environ Health Perspect 102 Suppl 3:45–50 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fischer, A. B. & Skreb, Y. In vitro toxicology of heavy metals using mammalian cells: an overview of collaborative research data. Arh Hig Rada Toksikol 52:333–354 (2001).

    CAS  PubMed  Google Scholar 

  24. Pasha Shaik, A., Sankar, S., Reddy, S. C., Das, P. G. & Jamil, K. Lead-induced genotoxicity in lymphocytes from peripheral blood samples of humans: in vitro studies. Drug Chem Toxicol 29:111–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Devi, K. D., Banu, B. S., Grover, P. & Jamil, K. Genotoxic effect of lead nitrate on mice using SCGE (comet assay). Toxicology 145:195–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Valverde, M., Fortoul, T. I., Díaz-Barriga, F., Mejía, J. & del Castillo, E. R. Genotoxicity induced in CD-1 mice by inhaled lead: differential organ response. Mutagenesis 17:55–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Collins, A. R. Investigating oxidative DNA damage and its repair using the comet assay. Mutat Res 681:24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Myles, G. & Sancar, A. DNA repair. Chem Res Toxicol 2:197–226 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Park, J. S. et al. Human AP Endonuclease 1: A Potential Marker for the Prediction of Environmental Carcinogenesis Risk. Oxid Med Cell Longev 2014:730301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Collins, A. R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mudipalli, A. Lead hepatotoxicity & potential health effects. Indian J Med Res 126:518–527 (2007).

    CAS  PubMed  Google Scholar 

  32. Lee, W. M. Drug-Induced Hepatotoxicity. N Engl J Med 349:474–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Waalkes, M. P., Hiwan, B. A., Ward, J. M., Devor, D. E. & Goyer, R. A. Renal tubular tumors and a typical Hyperplasias in B6C3F mice exposed to lead acetate during gestation and lactation occur with minimal chronic nephropathy. Cancer Res 55:5265–5271 (1995).

    CAS  PubMed  Google Scholar 

  34. Goyer, R. A. Lead toxicity: current concerns. Environ Health Prospect 100:177–187 (1993).

    Article  CAS  Google Scholar 

  35. Gerhardsson, L. et al. Lead in tissues of deceased lead smelter workers. J Trace Elem Med Biol 9:136–143 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Steenland, K. & Boffetta, P. Lead and cancer in humans: where are we now? Am J Ind Med 38:295–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. van Wijngaarden, E. & Dosemeci, M. Brain cancer mortality and potential occupational exposure to lead: findings from the National Longitudinal Mortality Study. Int J Cancer 119:1136–1144 (2006).

    Article  PubMed  Google Scholar 

  38. International Agency for Research on Cancer. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 87:371–372 (2006).

    Google Scholar 

  39. Kang, S. H., Kwon, J. Y., Lee, J. K. & Seo, Y. R. Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models. J Cancer Prev 18:277–288 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koizumi, S. & Yamada, H. DNA microarray analysis of altered gene expression in cadmium-exposed human cells. J Occup Health 45:331–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Sattler, U., Frit, P., Salles, B. & Calsou, P. Long-patch DNA repair synthesis during base excision repair in mammalian cells. EMBO Rep 4:363–367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fortini, P. & Dogliotti, E. Base damage and singlestrand break repair: mechanisms and functional significance of short-and long-patch repair subpathways. DNA Repair (Amst) 6:398–409 (2007).

    Article  CAS  Google Scholar 

  43. Sakai, Y., Yamamori, T., Yasui, H. & Inanami, O. Downregulation of the DNA repair enzyme apurinic/ apyrimidinic endonuclease 1 stimulates transforming growth factor-β1 production and promotes actin rearrangement. Biochem Biophys Res Commun 461:35–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Hartwig, A. Role of magnesium in genomic stability. Mutat Res 475:113–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Shivji, K. K., Kenny, M. K. & Wood, R. D. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69:367–374 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Essers, J. et al. Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25:9350–9359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung, H. J., Kim, H. L., Kim, Y. J., Weon, J. L. & Seo, Y. R. A novel chemopreventive mechanism of selenomethionine: Enhancement of APE1 enzyme activity via a Gadd45a, PCNA and APE1 protein complex that regulates p53-mediated base excision repair. Oncol Rep 30:1581–1586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hahn, K., Faustoferri, R. C. & Quivey, R. G. Jr. Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol 31:1489–1498 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Rok Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Lee, S.M., Kim, Y.J. et al. Integrative toxicogenomic analysis for elucidating molecular interference on DNA integrity and repair system with underlying signaling networks in response to low-level lead acetate in rat liver model. Mol. Cell. Toxicol. 13, 179–188 (2017). https://doi.org/10.1007/s13273-017-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0019-4

Keywords

Navigation