Skip to main content
Log in

Increasing the scanning range of Lamb wave based SHM systems by optimizing the actuator–sensor design

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Piezoelectric induced ultrasonic Lamb waves can easily be used for the development of structural health monitoring systems for aircraft and other thin-walled structures. The reduction of the excited wave amplitudes depends mainly on the traveling distance and the material damping, especially in composite materials which restricts the maximum scanning distance between a piezoelectric actuator and a sensor. But there are several possibilities to increase the scanning range of Lamb waves. In the present paper, the focus is on the influence of the adhesive layer and the resonances of the actuator to increase the amplitudes of the excited wave. The objective is to excite Lamb waves with higher amplitudes without increasing the electrical energy for the wave excitation. In the paper, a numerical optimization is proposed which aims at increasing the wave amplitudes by optimizing sensor parameters and the excitation frequency. It has been found that small changes in the geometry of the piezoelectric actuator patch and the use of an optimized excitation frequency elevate the amplitudes of waves significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

  2. Bartoli, I., di Scalea, F.L., Fateh, M., Viola, E.: Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. NDT&E Int. 38, 325–334 (2005)

    Article  Google Scholar 

  3. Bhalla, S., Soh, C.K.: Electromechanical impedance modeling for adhesively bonded piezo-transducers. J. Intell. Mater. Syst. Struct. 15, 955–972 (2004)

    Article  Google Scholar 

  4. Bohn, N.: Ein Beitrag zur Weiterentwicklung von Evolutionsstrategien für die virtuelle Produktentwicklung. PhD thesis, Otto-von-Guericke-University, Magdeburg (2008)

  5. Bohn, N., Gabbert, U.: Evolution strategies with line search for structural optimization. In: 8th World Congress on Structural and Multidisciplinary Optimization (2009)

  6. Boller, C., Staszewski, W., Tomlinson, G.: Health Monitoring of Aerospace Structures. Wiley, New York (2004)

  7. Brockmann, T.H.: Theory of Adaptive Fiber Composites: From Piezoelectric Material Behavior to Dynamics of Rotating Structures. Springer, Berlin (2009)

  8. Calomfirescu, M.: Lamb waves for structural health monitoring in viscoelastic composite materials. PhD thesis, University of Bremen (2008)

  9. Ciang, C.C., Lee, J.R., Bang, H.J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci. Technol. 19, 1–20 (2008)

    Article  Google Scholar 

  10. Crawley, E.F., de Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25, 1373–1385 (1987)

    Google Scholar 

  11. von Ende, S., Lammering, R.: Investigations on piezoelectrically induced Lamb wave generation and propagation. Smart Mater. Struct. 16, 1802–1809 (2007)

    Article  Google Scholar 

  12. Giurgiutiu, V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press (Elsevier), New York (2008)

  13. Ha, S.: Modeling Lamb wave propagation induced by adhesively bonded PZTs on thin plates. PhD thesis, Stanford University, California, USA (2009)

  14. Ha, S.: Adhesive interface layer effects in PZT-induced Lamb wave propagation. Smart Mater. Struct. 19, 1–9 (2010)

    Google Scholar 

  15. Ha, S., Mittal, A., Lonkar, K., Chang, F.K.: Adhesive layer effects on temperature-sensitive Lamb waves induced by surface-mounted PZT actuators. In: Structural Health Monitoring 2009: From System Integration to Autonomous Systems (2009)

  16. Huang, H., Pamphile, T., Derriso, M.: The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch. Smart Mater. Struct. 17, 1–13 (2008)

    Google Scholar 

  17. Kessler, S., Spearing, M., Atallab, M.: In-situ damage detection of composites structures using Lamb wave methods. In: Proceedings of the First European Workshop on Structural Health Monitoring, 10–12 July 2002, Paris, France (2002)

  18. Lamb, H.: On waves in an elastic plate. Proc. R. Soc. Lond. Ser. A 93, 114–128 (1917)

    Article  MATH  Google Scholar 

  19. Marinkovic, D.: A new finite composit shell element for piezoelectric active structures. PhD thesis, Otto-von-Guericke-University, Magdeburg (2007)

  20. Pohl, J., Willberg, C., Gabbert, U., Mook, G.: Theoretical analysis and experimental determination of the dynamic behaviour of piezoceramic actuators for SHM. Exp. Mech. 52, 429–438 (2012)

    Article  Google Scholar 

  21. Rechenberg, I.: Evolutionsstrategie ’94. Frommann-Holzboog, Germany (1994)

  22. Schwefel, H.P.: Evolutions and Optimum Seeking. Wiley, New York (1995)

  23. Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246–257 (2000)

    Google Scholar 

  24. Su, Z., Ye, L., Lu, Y.: Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295, 753–780 (2006)

    Article  Google Scholar 

  25. Viktorov I., A.: Rayleigh and Lamb Waves. Plenum Press, New York (1967)

  26. Willberg, C., Vivar-Perez, J.M., Ahmad, Z., Gabbert, U.: Simulation of piezoelectric induced Lamb wave motion in plates. In: Proceedings of the 7th International Workshop on Structural Health Monitoring 2009: From System Integration to Autonomous Systems, pp 2299–2307 (2009)

  27. Wolf, F.: Präzisionsmessungen des Elastizitätsmoduls von Polymeren mit Longitudinalschwingungen II. Teil: Apparatur und Ergebnisse. Colloid and Polymer Science Kolloid-Zeitschrift & Zeitschrift für Polymere 257, 1253–1275 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to thank the German Research Foundation (DFG) and all partners for their support (GA 480/13-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Willberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willberg, C., Duczek, S. & Gabbert, U. Increasing the scanning range of Lamb wave based SHM systems by optimizing the actuator–sensor design. CEAS Aeronaut J 4, 87–98 (2013). https://doi.org/10.1007/s13272-012-0052-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-012-0052-x

Keywords

Navigation