Abstract
Background
Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division. Utilization of next-generation sequencing in cancer gene panels has enabled the identification of actionable gene alterations in cancer patients to guide personalized precision medicine.
Objective
The aim is to provide information that can identify actionable gene alterations, enabling personalized precision medicine for cancer patients.
Results & discussion
Equipped with next-generation sequencing techniques, international collaboration programs on cancer genomics have identified numerous mutations, gene fusions, microsatellite variations, copy number variations, and epigenetics changes that promote the transformation of normal cells into tumors. Cancer classification has traditionally been based on cell type or tissue-of-origin and the morphological characteristics of the cancer. However, interactive genomic analyses have currently reclassified cancers based on systemic molecular-based taxonomy. Although all cancer-causing genes and mechanisms have yet to be completely understood or identified, personalized or precision medicine is now currently possible for some forms of cancer. Unlike the “one-size-fits-all” approach of traditional medicine, precision medicine allows for customized or personalized treatment based on genomic information.
Conclusion
Despite the availability of numerous cancer gene panels, technological innovation in genomics and expansion of knowledge on the cancer genome will allow precision oncology to manage even more types of cancers.
Similar content being viewed by others
Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.
References
AACR Project GENUE Consortium (2017) AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov 7:818–831. https://doi.org/10.1158/2159-8290.CD-17-0151
Abate RE, Frezzetti D, Maiello MR, Gallo M, Camerlingo R, De Luca A, De Celcio R, Morabito A, Normanno N (2020) Next generation sequencing-based profiling of cell free DNA in patients with advanced non-small cell lung cancer: Advantages and pitfalls. Cancers 12:3804. https://doi.org/10.3390/cancers12123804
Adamo P (2016) Ladomery M (2016) The oncogene ERG: a key factor in prostate cancer. Oncogene 35:403–414. https://doi.org/10.1038/onc.2015.109
Adamson ED (1987) Oncogenes in development. Development 99:449471. https://doi.org/10.1242/dev.99.4.449
Agarwal P, Sandey M, Delnnocentes P, Bird RC (2013) Tumor suppressor gene p16/INK4A/CDKn2A dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer. J Cell Biochem 114:1355–1366. https://doi.org/10.1002/jcb.24476
Allis C, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500. https://doi.org/10.1038/nrg.2016.59
Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48. https://doi.org/10.1038/nrg3356
Aoude LG, Wadt KA, Pritchard AL, Hayward NK (2015) Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 28:148–160. https://doi.org/10.1111/pcmr.12333
Ashley EA (2016) Toward precision medicine. Nat Rev Genet 17:507–522. https://doi.org/10.1038/nrg.2016.86
Bannister A, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395. https://doi.org/10.1038/cr.2011.22
Bansal V, Boucher C (2019) Sequencing technologies and analyses: Where have we been and where we going? iScience 18: 37–41. https://doi.org/10.1016/j.isci.2019.06.035
Barista I, Romaguera J, Cabanillas F (2001) Mantle-cell lymphoma. Lancet Oncol 2:141–148. https://doi.org/10.1016/S1470-2045(00)00255-2
Bassi N, Hovland HN, Rasheed K, Jarhelle E, Pedersen N, Mchaina EK, Bakkan SME, Iversen N, Høberg-Vetti H et al (2023) Functional analyses of rare germline BRCA1 variants by transcriptional activation and homologous recombination repair assays. BMC Cancer 23:368. https://doi.org/10.1186/s12885-023-10790-w
Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—Biological and translational implications. Nat Rev Cancer 11:726–734. https://doi.org/10.1038/nrc3130
Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8:a019505. https://doi.org/10.1101/cshperspect.a019505
Bert SA, Robinson MD, Srbenac D, Statham AL, Song JZ, Hulf T, Sutherland RL, Coolen MW, Stirzak C, Clark SJ (2013) Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23:9–22. https://doi.org/10.1016/j.ccr.2012.11.006
Birkbak NJ, McGranahan N (2020) Cancer Genome Evolutionary Trajectories in Metastasis. Cancer Cell 13:8–19. https://doi.org/10.1016/j.ccell.2019.12.004
Biserni G, Engstrøm MJ, Bofin AM (2016) HER2 copy number and breast cancer-specific survival. Histopathol 69:871–879. https://doi.org/10.1111/his.13010
Boddicker RL, Wang X, Dasari S, Nowakowski GS, Lazaridis KN, Wieben ED, Kadin ME, Feldman AL (2016) Retinoic acid receptor alpha expression drives cell-cycle progression and is associated with increased sensitivity to retinoids in peripheral T-cell lymphoma. Blood 22:1749. https://doi.org/10.1182/blood.V128.22.1749.1749
Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087. https://doi.org/10.1053/j.gastro.2009.12.064
Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Caner Res 15:5248–5257 (PMID: 9823339)
Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen NZ, Reeser JW, Yu L, Roychowdhury S (2017) Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol 1:1–15. https://doi.org/10.1200/PO.17.00073
Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signaling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598. https://doi.org/10.1038/nrc3342
Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216. https://doi.org/10.1038/nrc1073
Byeon IJ, Li J, Ericson K, Selby TL, Tevelev A, Hj K, O’Maille P, Tsai MD (1998) Tumor suppressor P16INK4A. Determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol Cell 1:421–431. https://doi.org/10.1016/j.ccell.2023.05.001
Catana A, Apostu AP, Antemie R-G (2019) Multi gene panel testing for hereditary breast cancer– is it ready to be used? Med Pharm Rep 92:220–225. https://doi.org/10.15386/mpr-1083
CGAN. Cancer Genome Atlas Network. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature. https://doi.org/10.1038/nature11252
Chakravarty D, Solit DB (2021) Clinical cancer genomic profiling. Nat Rev Genet 22:483–501. https://doi.org/10.1038/s41576-021-00338-8
Chen M, Zhao H (2019) Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 13:34. https://doi.org/10.1186/s40246-019-0220-8
Chen X, Zhang T, Su W, Dou Z, Zhao D, Jin X, Lei H, Wang J, Xie X, Cheng B, Li Q, Zhang H, Di C (2022) Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 13:974. https://doi.org/10.1038/s41419-022-05408-1
Cheng Y, Shen Z, Gao Y, Chen F, Xu H, Mo Q, Chu X, Peng C-L, McKenzie TT, Palacios EE et al (2022) Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas. Nat Commun 13:2724. https://doi.org/10.1038/s41467-022-30447-9
Chung CB, Lee J, Barritault M, Bringguier PP, Xu Z, Huang WY, Beharry A, Castillo J, Christiansen J, Lin JC, Sheffield BS (2021) Evaluating targeted next-generation sequencing assays and reference materials for NTRK fusion detection. J Mol Diagn 24:18–32. https://doi.org/10.1016/j.jmoldx.2021.09.008
Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604. https://doi.org/10.1016/s0092-8674(01)00245-8
Clark J, Rocques PJ, Crew AJ, Crew AJ, Shipley J, Chan AM-L, Gusterson BA, Cooper CS et al. (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 1994. https://doi.org/10.1038/ng0894-502
Conroy JM, Pabla S, Glenn ST, Seager RJ, van Roey E, Gao S, Burgher B, Andreas J, Giamo V, Burgher B et al (2021) A scalable high-throughput targeted next-generation sequencing assay for comprehensive genomic profiling of solid cancers. PLoS ONE 16:e0260089. https://doi.org/10.1371/journal.pone.0260089
Crowley E, Nicolantonio FD, Loupakis F, Badelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10:472–484. https://doi.org/10.1038/nrclinonc.2013.110
Dacic S, Flanagen M, Cieply K, Ramalingam S, Luketich J, Belani C, Yousem S (2006) Significance of EGFR protein expression and gene amplification in non-small cell lung carcinoma. Am J Clin Pathol 125:860–865. https://doi.org/10.1309/H5UW6CPCWWC92241
Dang CV (2012) MYC on the path to cancer. Cell 149:22–35. https://doi.org/10.1016/j.cell.2012.03.003
Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19, 1–11 (1999). https://doi.org/10.1128/mcb.19.1.1
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. https://doi.org/10.1038/nature00766
de Jong LC, Cree S, Lattimore V, Wiggins GAR, Spurdle AB, kConFab Ivestigators, Miller A, Kenedy M, Walker LC, (2017) Nanopore sequencing of full-length BRCA1 mRNA transcripts reveals co-occurrence of known exon skipping events. Breast Cancer Res 19:127. https://doi.org/10.1186/s13058-017-0919-1
de Thé H, Chomienne C, Degos L, Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 357:558–561. https://doi.org/10.1038/347558a0
Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3346. https://doi.org/10.1182/blood.V96.10.3343
Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037. https://doi.org/10.1056/NEJM200104053441401
Easton DS, Pharoah PDP, Antoniou AC, Tischkowitz M, Tavigian SV, Nathanson KL, Devilee P, Foulkes W (2015) Gene-panel sequencing and the prediction of breast cancer risk. N Engl J Med 372:2243–2257. https://doi.org/10.1056/NEJMsr1501341
Ehrlich M, Lacey M (2013) DNA hypomethylation and hemimethylation in cancer. Adv Exp Med Biol 754:31–56. https://doi.org/10.1007/978-1-4419-9967-2_2
Fackenthal JD, Olopade OI (2007) Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer 7:937948. https://doi.org/10.1038/nrc2054
Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10:721–733. https://doi.org/10.1093/hmg/10.7.721
Fujita K, Nonomura N (2019) Role of androgen receptor in prostate cancer: A review. World J Mens Health 37:288–295. https://doi.org/10.5534/wjmh.180040
Gainor JF, Shaw AT (2013) Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 8:865–875. https://doi.org/10.1634/theoncologist.2013-0095
Gambacorti-Passerini C, Antolini L, Mahon F-X, Guilhot F, Michael M, Fava C, Nagler A, Casa CMD, Morra E, Abruzzese E et al (2011) Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with Imatinb. J Natl Cancer Inst 103:553–561. https://doi.org/10.1093/jnci/djr060
Gao XH, Li J, Gong HF, Yu GY, Liu P, Hao LQ, Liu LJ, Bai CG, Zhang W (2020) Comparison of fresh frozen tissue with formalin-fixed paraffin-embedded tissue for mutation analysis using a multigene panel in patients with colorectal cancer. Front Oncol 10:310. https://doi.org/10.3389/fonc.2020.00310
Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122. https://doi.org/10.1038/nature03664. (PMID: 16001072)
Gear H, Williams H, Kemp EG, Roberts F (2004) BRAF Mutations in Conjunctival Melanoma IOVS 45:2482–2488. https://doi.org/10.1167/iovs.04-0093
Gendarme S, Bylicki O, Chouaid C, Guisier F (2022) ROS-1 fusions in non-small-cell lung cancer: evidence to date. Curr Oncol 29:641–658. https://doi.org/10.3390/curroncol29020057
Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227. https://doi.org/10.1038/sj.onc.1209615
Giacò L, Palluzzi F, Guido D, Nero C, Giacomni F, Duranti S, Bria E, Tortora G, Cenci T, Martini M et al (2021) A Computational framework for comprehensive genomic profiling in solid Cancers: The analytical performance of a high-throughput assay for small and copy number variants. Cancers 14(24):6152. https://doi.org/10.3390/cancers14246152
Golub TR, Slonim DK, Tamayo P, Huard C, Gassenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531–537. https://doi.org/10.1126/science.286.5439.531
Gossage L, Eisen T, Maher E (2014) VHL, the story of a tumor suppressor gene. Nat Rev Cancer 15:55–64. https://doi.org/10.1038/nrc3844
Green ED, Watson JD, Collins FS (2015) Human genome project: Twenty-five years of big biology. Nature 26:29–31. https://doi.org/10.1038/526029a
Hallberg B, Palmer RH (2016) The role of the ALK receptor in cancer biology. Ann Oncol Suppl 3:iii4-iii15. https://doi.org/10.1093/annonc/mdw301.
Hallberg B, Palmer RH (2013) Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 13:685–700. https://doi.org/10.1038/nrc3580
Hankey W, Frankel WL, Groden J (2018) Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: Implications for therapeutic targeting. Caner Metastasis Rev 37:159–172. https://doi.org/10.1007/s10555-017-9725-6
Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2 action in breast cell. Oncogene 19:6102–6114. https://doi.org/10.1038/sj.onc.1203973
Heather JM, Chian B (2016) The sequence of sequencer: The history of sequencing DNA. Genomics 107:1–8. https://doi.org/10.1016/j.ygeno.2015.11.003
Helzer KT, Sharifi MN, Sperger JM, Shi Y, Annala M, Bootsma ML, Reese SR, Taylor A, Kaufmann KR, Burkard ME, Rydzewski NR, Harari PM, Bassetti M, Blitzer G, Zhao SG (2023) Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann Oncol 34:813–825. https://doi.org/10.1016/j.annonc.2023.06.001
Hemmings B, Restuccia DF (2012) PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4:a011189. https://doi.org/10.1101/cshperspect.a011189
Heyer EE, Deveson IW, Wooi D, Selinger CI, Lyons RJ, Hayes VM, O’Toole SA, Ballinger ML, Gill D, Thomas DM et al (2019) Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun 10(1):1388. https://doi.org/10.1038/s41467-019-09374-9
Hingorani AD, Windt DA, Riley RD, Abrams K, Moons KGM, Steyerberg E, Schrotere S, Sauebrei W, Altman DG, Hemingway H et al (2013) Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ 346:e5793. https://doi.org/10.1136/bmj.e5793
Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V et al (2014) Multi-platform analysis of 12 cancer types reveals molecular classification within and across tissue-of-origin. Cell 158:929–944. https://doi.org/10.1016/j.cell.2014.06.049
Hofman V, Heeke S, Bontoux C, Chalabreysse L, Barritault M, Bringuier PP, Fenuil T, Benserdjeb N, Begueret H, Merlio JP et al (2023) Ultrafast gene fusion assessment for nonsquamous NSCLC. JTO Clin Res Rep 4:100457. https://doi.org/10.1016/j.jtocrr.2022.100457
Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE et al (2012) Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 22:246–258. https://doi.org/10.1101/gr.125872.111
Hoover M, Adamian Y, Brown M, Maawy A, Chang A, Lee J, Gharibi A, Katz MH, Fleming J, Hofffman RM, Bouvet M, Doebler R, Kelber JA (2017) A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts. Oncotarget 8:5885–5894. https://doi.org/10.18632/oncotarget.11809
Huang M, Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 3:a0144115. https://doi.org/10.1101/cshperspect.a014415
Huff V (1998) Wilms tumor genetics. Am J Med Genet 79:260–267. https://doi.org/10.1002/(SICI)1096-8628(19981002)79:4%3c260::AID-AJMG6%3e3.0.CO;2-Q
Hunger SP, Mullighan CG (2015) Acute Lymphoblastic Leukemia in Children. N Eng J Med. https://doi.org/10.1056/NEJMra1400972
Hur K, Cejas P, Feliu J, Moreno-Rubio J, Burgos E, Boland CR, Goel A (2014) Hypomethylation of long interspersed nuclear elemnts-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63:635–646. https://doi.org/10.1136/gutjnl-2012-304219
ICGC (2010) The International Cancer Genome Consortium. International network of cancer genome projects. Nature 464:993–998. https://doi.org/10.1038/nature08987
ICGC, PCAWG, (2020) The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-Cancer Analysis of Whole Genomes Nature 578:82–93. https://doi.org/10.1038/s41586-020-1969-6
ICGC, TCGA, (2020) Whole tumor genomes across cancers. Nat Genet 52:241. https://doi.org/10.1038/s41588-020-0597-2
Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N, Kurokawa M (2013) A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol 97:726–734. https://doi.org/10.1007/s12185-013-1347-3
IHGSC (2001) International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062
Imai K, Yamamoto H (2008) Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29(4):673–680. https://doi.org/10.1093/carcin/bgm228
Imielinski M, Rubin M (2017) Clinical hallmarks in whole cancer genomes. Nat Rev Clin Oncol 14:265–266. https://doi.org/10.1038/nrclinonc.2017.45
Jasmine F, Haq Z, Kamal M, Raza M, da Silva G, Gorospe K, Paul R, Strzempak P, Ahsan H, Kirriya MG (2021) Interaction between microsatellite instability (MSI) and tumor methylation in the pathogenesis of colorectal carcinoma. Cancers 13:4956. https://doi.org/10.3390/cancers13194956
Jiricny J (2013) Post replicative mismatch repair. Cold Spring Harb Perspect Biol 5:a012633. https://doi.org/10.1101/cshperspect.a012633
Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692. https://doi.org/10.1016/j.cell.2007.01.029
Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682. https://doi.org/10.1038/nrc885
Karakas B, Bachman K, Park B (2006) Mutation of the PIK3CA oncogene in human cancers. Br J Cancer 94:455–459. https://doi.org/10.1038/sj.bjc.6602970
Kattan WE, Hamncock JF (2020) RAS function in cancer cells; translating membrane biology and biochemistry into new therapeutics. Biochem j 477:2893–2919. https://doi.org/10.1042/BCJ20190839
Khoo V, Rogers TM, Fellows A, Bell A, Fox S (2015) Molecular methods for somatic mutation testing in lung adenocarcinoma: EFGR and beyond. Transl Lung Cancer 4:216–141. https://doi.org/10.3978/j.issn.2218-6751.2015.01.10
Kim SH, Menon H, Jootar S, Saikia T, Kwak JY, Sohn SK, Park JS, Jeong SH, Kim HJ, Kim YK et al (2014) Efficacy and safety of radotinib in chronic phase chronic myeloid leukemia patients with resistance or intolerance to BCR-ABL1 tyrosine kinase inhibitors. Haematologica 99(7):1191–1196. https://doi.org/10.3324/haematol.2013.096776
Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, Lee JI, Suh YL, Ku BM, Eum HH et al (2020) Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 11(1):2285. https://doi.org/10.1038/s41467-020-16164-1
Knudsen KE (2006) The cyclin D1b splice variant: an old oncogene learns new tricks. Cell Div 1:15. https://doi.org/10.1186/1747-1028-1-15
Knudsen ES, Knudsen KE (2006) Retinoblastoma Tumor Suppressor: Where Cancer Meets the Cell Cycle. Exp Biol Med 231:1271–1281. https://doi.org/10.1177/153537020623100713
Knudson A (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823. https://doi.org/10.1073/pnas.68.4.820
Kohl NE, Kanda N, Schreck RR, Latt SA, Gilber F, Alt FW (1983) Transposition and amplification of oncogene-related sequences in human neuroblastoma. Cell 35:359–367. https://doi.org/10.1016/0092-8674(83)90169-1
König IR, Fuchs O, Hansen G, von Mutius E, Kopp MV (2017) What is precision medicine. Eur Respir J 50:1700391. https://doi.org/10.1183/13993003.00391-2017
Kontomanolis E, Koutras A, Syllaios A, Schzas D, Mastoraki A, Garmpis N, Diakosavvas M, Aggelou K, Tsatsaris G, Pagkalos A, Ntounis T, Fasoulakis Z (2020) Role of oncogenes and tumor-suppressor genes in carcinogenesis. A Review Anticancer Res 40:6009–6015. https://doi.org/10.21873/anticanres.14622
Kwon D, Kim B, Shin HC, Kim EJ, Ha SY, Jang KT, Kim ST, Lee J, Park JO, Kim KM (2019) Cancer panel assay for precision oncology clinic: Results from 1-year study. Transl Oncol 22:1488–1495. https://doi.org/10.1016/j.tranon.2019.07.017
Kwon YW, Jo HS, Bae S, Seo Y, Song P, Song M, Yoon JH (2021) Application od proteomics in cancer: Recent trends and approaches for biomarkers discovery. Front Med 8:747333. https://doi.org/10.3389/fmed.2021.747333
Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16. https://doi.org/10.1038/358015a0
Lang J, Cho WC, Huang T, Wu T, Xu J (2023) Editorial: application of RNA-Seq in caner and tumor research. Front Genet 14:1331576. https://doi.org/10.3389/fgene.2023.1331576
Le Gallo M, Bell DW (2014) The emerging genomic landscape of endometrial cancer. Clin Chem 60:98–110. https://doi.org/10.1373/clinchem.2013.205740
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413. https://doi.org/10.1126/science.aan6733
Lee YR, Chen M, Pandolfi PP (2018) The functions and regulation of the PTEN tumor suppressor: new modes and prospects. Nat Rev Mol Cell Biol 19:547–562. https://doi.org/10.1038/s41580-018-0015-0
Lee YE, Park JH, Lim HJ, Kim HR, Shin JH, Shin MG (2022) Comparative evaluation of the developed targeted RNA sequencing system and a commercialized panel. Blood Res 2022:57. https://doi.org/10.5045/br.2022.2022095
Lennox JC (2009) God’s Undertaker: Has Science Buried God? Lion Books, ISBN, p 9780745953717
Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukemia genome. Nature 456(7218):66–72. https://doi.org/10.1038/nature07485
Li J, Cao F, Yin HL, Huang ZJ, Kin ZT, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11:88. https://doi.org/10.1038/s41419-020-2298-2
Liu D, Paczkowski P, MacKay S, Ng C, Zhou J (2020) Single-cell multiplexed proteomics in the IsoLight resolves cellular functional heterogeneity to reveal clinical responses of cancer patients to immunotherapies. Methods Mol Biol 2055:413–431. https://doi.org/10.1007/978-1-4939-9773-2_19
Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska F et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. https://doi.org/10.1056/NEJMoa040938
Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465. https://doi.org/10.1038/nrc1097
Marczyk M, Fu C, Lau R, Du L, Trevarton AJ, Sinn BV, Gould RE, Puszatai L, Hatzis C, Symmans WF (2019) The impact of RNA extraction method on accurate RNA sequencing from formalin-fixed paraffin-embedded tissues. BMC Cancer 19:1189. https://doi.org/10.1186/s12885-019-6363-0
Markóczy Z, Sárosi V, Kudaba I, Gálffy G, Turay ÜY, Demirkazik A, Purkalne G, Somfay A, Pápai-Székely Z, Erzsébet Rásó E et al. (2018) Erlotinib as single agent first line treatment in locally advanced or metastatic activating EGFR mutation positive lung adenocarcinoma (CEETAC): an open-level, non-randomized. Multicenter, phase IV clinical trial. BMC Caner 18: 598. https://doi.org/10.1186/s12885-018-4283-z
Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754. https://doi.org/10.1093/emboj/19.8.1745
Meagher KM, McGowan ML, Settereten RA Jr, Fishman JR, Juengst ET (2017) Precisely where we are going? Charting new terrain of precision prevention. Ann Rev Genomics Hum Genet 18:369–387. https://doi.org/10.1146/annurev-genom-091416-035222
Ménard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene: 22(42):6570–8. https://doi.org/10.1038/sj.onc.1206779.
Miguel CS, Tiffany C-A, Silva ASM, Rodrigues M (2015) Neurofibromatosis type 1 and attention deficit hyperactivity disorder: a case study and literature review. Neuropsychiatri Dis Treat 11:815–821. https://doi.org/10.2147/NDT.S75038
Minami J, Morrow D, Bayley NA, Fernandez EG, Salinas JL, Tse C, Zhu H, Su B, Plawat R, Jones A et al (2023) CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 41:1048–1060. https://doi.org/10.1016/j.ccell.2023.05.001
Mitric C, Salman L, Abrahamyan L, Kim SR, Pechlivanoglou P, Chan KKW, Gien LT, Ferguson SE (2023) Mismatch-repair deficiency, microsatellite instability, and lynch syndrome in ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol 170:133–142. https://doi.org/10.1016/j.ygyno.2022.12.008
Moasser MM (2007) The oncogene HER2L its signaling and transforming functions and its role in human cancer parthenogenesis. Oncogene 26:6469–6487. https://doi.org/10.1038/sj.onc.1210477
Montalto FI, De Amicis F (2020) Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion, invasion in tumor and stroma. Cells 9:2648. https://doi.org/10.3390/cells9122648
Mulligan LM (2014) RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 14:173–186. https://doi.org/10.1038/nrc3680
Murakami S, Yokose T, Shinada K, Isaka T, Katakura K, Ushio R, Kondo T, Kato T, Ito H, Saito H (2022) Comparison of next-generation sequencing and cobas EGFR mutation test v2 in detecting EGFR mutations. Thorac Cancer 13:3217–3224. https://doi.org/10.1111/1759-7714.14685
Nagakubo Y, Hirotsu Y, Yoshino M, Amemiya K, Saito R, Kazizaki Y, Tsutsui T, Miyashita Y, Goto T, Omata M (2024) Comparison of diagnostic performance between Oncomine Dx target test and AmoyDx panel for detecting actionable mutations in lung cancer. Sci Rep 14:12480. https://doi.org/10.1038/s41598-024-62857-8
Nagasaka M, Zhang SS, Baca Y, Xiu J, Nieva J, Vanderwalde A, Swensen JJ, Speltzer D, Korn WM, Raez LE, Liu SV, Ou S-HI (2023) Pan-tumor survey of ROS1 fusions detected by next-generation RNA and whole transcriptome sequencing. BMC Cancer 23:1000. https://doi.org/10.1186/s12885-023-11457-2
Neben CL, Zimmer AD, Stedden W, van den Akker J, O’Conor R, Chan RC, Chen E, Tan Z, Leon A, Topper S, Zhou AY (2019) Multi-gene panel testing of 23,179 individuals for hereditary cancer risk identifies pathogenic variant carriers missed by current genetic testing guidelines. J Mol Diagn 21:646–657. https://doi.org/10.1016/j.jmoldx.2019.03.001
Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497. https://doi.org/10.1007/BF01630378
Nurk S, Koren S, Rhie A, Rautianen M, Bzikadze A, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Phillipy AM et al (2022) Science 376:44–33. https://doi.org/10.1126/science.abj6987
Olivier M, Hoolstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. https://doi.org/10.1101/cshperspect.a001008
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Kaye FJ, Lindeman N, Bogoon TJ, Naoki K et al (2004) EGFR mutations in lung cancer: Correlation with clinical response to Gefitinib therapy. Science 304:1497–15000. https://doi.org/10.1126/science.1099314
Parimi V, Tolba K, Danziger N, Kuang Z, Sun D, Lin DI, Hiemenz MC, Schrock AB, Ross G, Oxnard G, Huang SP (2023) Genomic landscape of 891 RET fusions detected across diverse solid tumors. Precis Oncol 7:10. https://doi.org/10.1038/s41698-023-00347-2
Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A (2020) Mismatch repair pathway, genome instability. Front Mol Biosci 7:122. https://doi.org/10.3389/fmolb.2020.00122
Pleasance E, Cheetham R, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196. https://doi.org/10.1038/nature08658
Preston J, Zeeland V, Peiffer DA (2021) Innovation at Illumina: The road to the $600 Human Genome. Nature Portfolio, Berlin
Pugh TJ, Belll J, Bruce JP, Doherty GJ, Galvin M, Green MF, Hunter-Zinck H, Kumari P, Lenoue-Newton ML, Li MM et al. AACR project GENIE: 100,000 cases and beyond. Cancer Discov 12: 2044–2057. https://doi.org/10.1158/2159-8290.CD-21-1547
Quintás-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1–positive chronic myeloid leukemia. Blood 113:1619–1630. https://doi.org/10.1182/blood-2008-03-144790
Roth SC (2019) What is genomic medicine? J Med Libr Assoc 107:442–448. https://doi.org/10.5195/jmla.2019.604
Saito A, Terai H, Kim TJ, Emoto K, Kawano R, Nakamura K, Hayashi H, Takaoka H, Ogata A, Kinoshita K et al (2024) Clinical utility of the Oncomine Dx Target Test multi-CDx system and the possibility of utilizing those original sequence data. Cancer Med 13(4):e7077. https://doi.org/10.1002/cam4.7077
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Azabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554. https://doi.org/10.1126/science.1096502
Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707. https://doi.org/10.1038/366704a0
Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, Takahashi K (2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Invetig Dermal Symp Proc 6:99–104. https://doi.org/10.1046/j.0022-202x.2001.00010.x
Simanshu DK, Nissley DV, McCormick F (2017) RAS proteins and their regulators in human disease. Cell 170:17–33. https://doi.org/10.1016/j.cell.2017.06.009
Sobin LH (1981) The international histological classification of tumors. Bull World Health Organ 59:813–819 (PMID: 6978190)
Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566. https://doi.org/10.1038/nature05945
Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA (2018) The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 18:696–770. https://doi.org/10.1038/s41568-018-0060-1
Song MS, Salmena L, Pandolfi PP (2012) The function and regulation of the PTEN tumor suppressor. Nat Rev Mol Cell Biol 4;13(5):283–96. https://doi.org/10.1038/nrm3330.
Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penniger JM, Siderovski DP, Mal TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39. https://doi.org/10.1016/s0092-8674(00)81780-8
Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656. https://doi.org/10.1038/s41576-019-0150-2
Strausberg RL, Simpson AJG (2010) Whole-genome cancer analysis as an approach to deeper understanding of tumor biology. Br J Cancer 102:243–248. https://doi.org/10.1038/sj.bjc.6605497
Sullivan I, Planchard D (2016) ALK inhibitors in non-small cell lung cancer: the latest evidence and developments. Ther Adv Med Oncol 8:32–47. https://doi.org/10.1177/1758834015617355
Sun G, Li Z, Rong D, Zhang H, Shi X, Yang W, Zheng W, Sun G, Wu F, Cao H, Tang W, Sun Y (2021) Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Mol Ther Oncol 21:183–206. https://doi.org/10.1016/j.omto.2021.04.001
Sung JS, Chong HY, Kwon NJ, Kim HM, Lee JW, Kim B, Lee SB, Choi PCW, JY, Chang WJ, et al (2017) Detection of somatic variants and EGFR mutations in cell-free DNA from non-small cell lung cancer patients by ultra-deep sequencing using the ion ampliseq cancer hotspot panel and droplet digital polymerase chain reaction. Oncotarget 5:106901–106912. https://doi.org/10.18632/oncotarget.22456
Supplit S, Karpinski P, Sasiadek M, Laczmanka I (2021) Current achievements and applications of transcriptomics in personalized medicine. Int J Mol Sci 22:1422. https://doi.org/10.3390/ijms22031422
Taieb J, Svrcek M, Cohen R, Basile D, Tougeron D, Phelip JM (2022) Deficient mismatch repair/microsatellite unstable colorectal cancer: diagnosis, prognosis and treatment. Eur J Cancer 17%; 136–157. https://doi.org/10.1016/j.ejca.2022.07.020
Takahashi M, Kawai K, Asai N (2020) Roles of the RET proto-oncogene in cancer and development. JMA J 15:175–181. https://doi.org/10.31662/jmaj.2020-0021
Takeuchi S, Doi M, Ikari N, Yamamoto M, Furukawa T (2018) Mutations in BRCA1, BRCA2, and PALB2, and a panel of 50 cancer-associated genes in pancreatic ductal adenocarcinoma. Sci Rep 8:8105. https://doi.org/10.1038/s41598-018-26526-x
Tamaki S, Fukuta M, Sekiguchi K, Jin Y, Nagata S, Hayakawa K, Hineno S, Okamoto T, Watanabe M, Woltjen K et al (2015) SS18-SSX, the Oncogenic Fusion Protein in Synovial Sarcoma, Is a Cellular Context-Dependent Epigenetic Modifier. PLoS ONE 10(11):e0142991. https://doi.org/10.1371/journal.pone.0142991
TCGA (2010) The International Cancer Genome Consortium. International network of cancer genome projects. Nature 464:993–998. https://doi.org/10.1038/nature08987
Tognon CE, Garnett M, Kenward E, Kay R, Morrison K, Sorensen PHB (2001) The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling or fibroblast transformation. Cancer Res 61:8909–8916
Tognon CE, Knezevich S, Huntsman D, Roskelley C, Melynyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D et al (2002) ETV6-NTRK3 gene fusions in childhood secretory breast carcinoma, mesoblastic nephroma, and congenital fibrosarcoma. Cancer Lett. https://doi.org/10.1016/s0304-3835(02)00265-2
Tokumo M, Toyooka S, Kiura K, Shigematsu H, Tomii K, Aoe M, Ichimura K, Tsuda T, Yano M, Tsukuda K et al (2005) The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res 11(3):1167–1173. https://doi.org/10.1158/1078-0432.1167.11.3
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al. (2005) Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–8. https://doi.org/10.1126/science.1117679.
Tsimberidou AM, Fountzials E, Bleris L, Kurzrock R (2022) Transcriptomics and solid tumors: The next frontiers in precision medicine. Semin Cancer Biol 84:50–59. https://doi.org/10.1016/j.semcancer.2020.09.007
Vaarala MH, Porvari KS, Kellokumpu S, Kyllonen AP, Vihko PT (2000) Expression of transmembrane serine protease TMPSS2 in mouse and human tissues. J Pathol 193:134–140. https://doi.org/10.1002/1096-9896(2000)9999:9999
Vaishnavi A, Le AT, Doebele R (2015) TRKing down an old oncogenic in a new era of targeted therapy. Cancer Discov 5:25–34. https://doi.org/10.1158/2159-8290.CD-14-0765
Veloza L, Ribera-Cortada I, Campo E (2019) Mantle cell lymphoma pathology update in the 2016 WHO classification. Ann Lymphoma 3:3. https://doi.org/10.21037/aol.2019.03.01
Venkatachalam R, Ligtenberg MJL, Hoogerbrugge N, van Kessel AG, Kuiper RP (2008) Predisposition to coloectal cancer: exploiting copy number varirion to identify novel predisposing genes and mechanisms. Cytogenet Genome Res 123(1–4):188–194. https://doi.org/10.1159/000184708
Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182. https://doi.org/10.1016/s0092-8674(02)00615-3
Venter JC, Myers AMD, EW, Li PW, Mural RJ, Sutton GG, Smith HO, Smith HO, Yandell M, Evans CA, Holt RA, et al (2001) The sequence of the human genome. Science 291:1304–1351. https://doi.org/10.1126/science.1058040
Vilkin A, Niv Y, Nagasaka T, Morgenstern S, Levi Z, Fireman Z, Fuerst F, Goel A, Boland CR (2009) Microsatellite instability, MLH1 promoter methylation, and BRAF mutation analysis in sporadic colorectal cancers of different ethnic groups in Israel. Cancer 115:760–769. https://doi.org/10.1002/cncr.24019
Vogelstein B, Kinzler K (2004) Cancer genes and the pathways they control. Nat Med 10:789–799. https://doi.org/10.1038/nm1087
Wang LC, Swat W, Fujiwara Y, Davidson L, Visvader J, Kuo F, Alt FW, Gilliland GD, Golub TR, Orkin SH (1998a) The TEL/ETV6 gene is required for hematopoiesis in the bone marrow. Genes Dev 12:2392–1402. https://doi.org/10.1101/gad.12.15.2392
Wang ZG, Delva L, Gaboli MA, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PA (1998b) Role of PML in cell growth and retinoic acid pathway. Science 279:1547–1551. https://doi.org/10.1126/science.279.5356.1547
Wolff AC, Hammond MEH, Allison K, Harvey BE, Mangu PM, Bartlett JM, Nilous M, Ellis JO, Fitzgibbons P, Hanna W et al (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol 36:2105–2122. https://doi.org/10.1200/JCO.2018.77.8738
WTGC (2020) Whole tumor genomes across cancers. Nat Genet 52:241. https://doi.org/10.1038/s41588-020-0597-2
Wu YL, Tsuboi M, He J, John T, Grohe C, Majem M, Goldman JW, Laktionov K, Kim SW, Kato T et al (2020) Osimetinib in resected EFGR-mutated non-small-cell lung cancer. New E J Med 383:1711–1723. https://doi.org/10.1056/NEJMoa2027071
Yang L, Han Y, Saiz FS, Minden MD (2007) A tumor suppressor and oncogene: the WT1 story. Leukemia 21:868–876. https://doi.org/10.1038/sj.leu.2404624
Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137. https://doi.org/10.1038/35052073
Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37 Suppl 4, S3–8. https://doi.org/10.1016/s0959-8049(01)00230-1
Zhang J, Gao X, Yu L (2021) Roles of histone deacetylases in acute myeloid leukemia with fusion proteins. Front Oncol 11:741746. https://doi.org/10.3389/fonc.2021.741746
Zhao M, Mishra L, Deng CX (2018) The role of TGF-β SMAD4 signaling in cancer. Int J Mol Sci 14:111–123. https://doi.org/10.7150/ijbs.23230
Zhao L, Wang N, Zhang D, Jia Y, Kong F (2023) A comprehensive overview of the relationship between RET genes and tumor occurrence. Front Oncol 13:1090757. https://doi.org/10.3389/fonc.2023.1090757
Zhu J, Deane N, Lewis K, Padmanabhan C, Washington MK, Ciombor KK, Timmers C, Goldberg RM, Beauchamp D, Chen X (2016) Evaluation of frozen tissue-derived prognostic gene expression signatures in FFPE colorectal cancer samples. Sci Rep 6:33273. https://doi.org/10.1038/srep33273
Acknowledgements
This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE)(2022RIS-005) and by Ministry of Science and ICT, Korea (RS-2023-00260267)
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
N.-S.K. prepared the draft manuscript. Y.-J.C. and J.-Y.J. added their opinions to edit the draft. Y.H and W.-J.K. reviewed critically the revised manuscript. I.-Y.C. is a principal investigator to design the work and reviewed the manuscript finally. All authors have read and agreed to the published version of the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Heo, Y., Kim, WJ., Cho, YJ. et al. Advances in cancer genomics and precision oncology. Genes Genom 47, 399–416 (2025). https://doi.org/10.1007/s13258-024-01614-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13258-024-01614-7