Skip to main content

Advertisement

Log in

A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In the present paper, a hybrid multilevel thresholding technique that combines intuitionistic fuzzy sets and tsallis entropy has been proposed for the automatic delineation of the tumor from magnetic resonance images having vague boundaries and poor contrast. This novel technique takes into account both the image histogram and the uncertainty information for the computation of multiple thresholds. The benefit of the methodology is that it provides fast and improved segmentation for the complex tumorous images with imprecise gray levels. To further boost the computational speed, the mutation based particle swarm optimization is used that selects the most optimal threshold combination. The accuracy of the proposed segmentation approach has been validated on simulated, real low-grade glioma tumor volumes taken from MICCAI brain tumor segmentation (BRATS) challenge 2012 dataset and the clinical tumor images, so as to corroborate its generality and novelty. The designed technique achieves an average Dice overlap equal to 0.82010, 0.78610 and 0.94170 for three datasets. Further, a comparative analysis has also been made between the eight existing multilevel thresholding implementations so as to show the superiority of the designed technique. In comparison, the results indicate a mean improvement in Dice by an amount equal to 4.00% (p < 0.005), 9.60% (p < 0.005) and 3.58% (p < 0.005), respectively in contrast to the fuzzy tsallis approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Dahshan E-SA, Mohsen HM, Revett K, Salem A-BM (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41:5526–5545

    Article  Google Scholar 

  2. Georgiadis P, Cavouras D, Kalatzis I et al (2008) Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Comput Methods Programs Biomed 89:24–32

    Article  PubMed  Google Scholar 

  3. Zacharaki EI, Wang S, Chawla S, Soo D (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sachdeva J, Kumar V, Gupta I et al (2012) A novel content-based active contour model for brain tumor segmentation. Magn Reson Imaging 30:694–715

    Article  PubMed  Google Scholar 

  5. Joe BN, Fukui MB, Meltzer CC et al (1999) Brain tumor volume measurement: comparison of manual and semi automated methods. Radiology 212:811–816

    Article  CAS  PubMed  Google Scholar 

  6. Corso JJ, Sharon E, Dube S et al (2008) Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 27:629–640

    Article  CAS  PubMed  Google Scholar 

  7. Hemanth DJ, Vijila CKS, Selvakumar AI, Anitha J (2013) Distance metric-based time-efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation. Neural Comput Appl 22:1013–1022

    Article  Google Scholar 

  8. Dou W, Ruan S, Chen Y et al (2007) A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vis Comput 25:164–171

    Article  Google Scholar 

  9. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31:1426–1438

    Article  PubMed  Google Scholar 

  10. Ahmadvand A, Sharififar M, Daliri MR (2015) Supervised segmentation of MRI brain images using combination of multiple classifiers. Australas Phys Eng Sci Med 38:241–253

    Article  PubMed  Google Scholar 

  11. Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ (2009) Fractal-based brain tumor detection in multimodal MRI. Appl Math Comput 207:23–41

    Google Scholar 

  12. Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21:43–63

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Xia Y, Dagan D (2014) Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method. Biomed Sig Process Control 12:10–18

    Article  Google Scholar 

  14. Sethi G, Saini BS (2015) Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm. Australas Phys Eng Sci Med 38:671–688

    Article  PubMed  Google Scholar 

  15. Chaddad A (2015) Automated feature extraction in brain tumor by magnetic resonance imaging using Gaussian mixture models. J Biomed Imaging 2015:8

    Google Scholar 

  16. Kaur T, Saini BS, Gupta S (2016) Optimized multi threshold brain tumor image segmentation using two dimensional minimum cross entropy based on co-occurrence matrix. In: Dey N, Bhateja V, Hassanien AE (eds) Medical Imaging Clinical Application. Springer International Publishing, Cham, pp 461–486

    Chapter  Google Scholar 

  17. Vijayakumar C, Damayanti G, Pant R, Sreedhar CM (2007) Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Comput Med Imaging Graph 31:473–484

    Article  CAS  PubMed  Google Scholar 

  18. Festa J, Pereira S, Mariz JA et al (2013) Automatic brain tumor segmentation of multi-sequence MR images using random decision forests. In: MICCAI Chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 23–26

    Google Scholar 

  19. Geremia E, Menze BH, Ayache N (2012) Spatial decision forests for glioma segmentation in multi-channel MR images. MICCAI Chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 14–18

    Google Scholar 

  20. Parisot S, Wells W, Chemouny S et al (2014) Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. Med Image Anal 18:647–659

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Udupa JK, Odhner D et al (2005) A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput Med Imaging Graph 29:21–34

    Article  PubMed  Google Scholar 

  22. Cordier N, Menze B, Delingette H, Ayache N (2013) Patch-based segmentation of brain tissues. In: MICCAI Chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 6–17

    Google Scholar 

  23. Doyle S, Vasseur F, Dojat M, Forbes F (2013) Fully automatic brain tumor segmentation from multiple MR sequences using hidden markov fields and variational EM. In: MICCAI Chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 18–22

    Google Scholar 

  24. Meier R, Bauer S, Slotboom J et al (2013) A hybrid model for multimodal brain tumor segmentation. In: MICCAI Chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 31–37

    Google Scholar 

  25. Reza S, Iftekharuddin KM (2013) Multi-class abnormal brain tissue segmentation using texture features. In: MICCAI Chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 38–42

    Google Scholar 

  26. Zhao L, Sarikaya D, J.Corso J (2013) Automatic brain tumor segmentation with MRF on supervoxels. In: MICCAI Chall. Multimodal brain tumor segmentation. IEEE, Nagoya, pp 51–57

    Google Scholar 

  27. Njeh I, Sallemi L, Ayed I, Ben et al (2015) 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput Med Imaging Graph 40:108–119

    Article  PubMed  Google Scholar 

  28. Khotanlou H, Colliot O, Atif J, Bloch I (2009) 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst 160:1457–1473

    Article  Google Scholar 

  29. Wang T, Cheng I, Basu A (2009) Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomed Eng 56:781–789

    Article  PubMed  Google Scholar 

  30. Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13:3066–3091

    Article  Google Scholar 

  31. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions. Expert Syst Appl 42:1573–1601

    Article  Google Scholar 

  32. Maitra M, Chatterjee A (2008) A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging. Measurement 41:1124–1134

    Article  Google Scholar 

  33. Sathya PD, Kayalvizhi R (2011) Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm. Neurocomputing 74:2299–2313

    Article  Google Scholar 

  34. Sathya PD, Kayalvizhi R (2011) Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images. Measurement 44:1828–1848

    Article  Google Scholar 

  35. Manikandan S, Ramar K, Iruthayarajan MW et al (2014) Multilevel thresholding for segmentation of medical brain images using Real coded Genetic Algorithm. Measurement 47:558–568

    Article  Google Scholar 

  36. Sathya PD, Kayalvizhi R (2010) Optimum multilevel image thresholding based on tsallis entropy method with bacterial foraging algorithm. Int J Comput Sci Issues 7:336–343

    Google Scholar 

  37. Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30

    Article  Google Scholar 

  38. Tsallis C (1988) Possible generalization of boltzmann-gibbs statistics. J Stat Phys 52:479–487

    Article  Google Scholar 

  39. Portes de Albuquerque M, Esquef IA, Gesualdi Mello AR, Portes de Albuquerque M (2004) Image thresholding using tsallis entropy. Pattern Recognit Lett 25:1059–1065

    Article  Google Scholar 

  40. Manikantan K, V AB, Yaradoni DKS (2012) Optimal multilevel thresholds based on tsallis entropy method using golden ratio particle swarm optimization for improved image segmentation. Procedia Eng 30:364–371

    Article  Google Scholar 

  41. Sarkar S, Das S (2013) Multilevel image thresholding based on 2D histogram and maximum tsallis entropy—a differential evolution approach. IEEE Trans Image Process 22:4788–4797

    Article  PubMed  Google Scholar 

  42. Tang K, Yuan X, Sun T et al (2011) An improved scheme for minimum cross entropy threshold selection based on genetic algorithm. Knowledge-Based Syst 24:1131–1138

    Article  Google Scholar 

  43. Yin P-Y (2007) Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl Math Comput 184:503–513

    Google Scholar 

  44. Horng M-H, Liou R-J (2011) Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst Appl 38:14805–14811

    Article  Google Scholar 

  45. Horng MH (2010) Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization. Expert Syst Appl 37:4580–4592

    Article  Google Scholar 

  46. Nie F, Gao C, Guo Y, Gan M (2011) Two-dimensional minimum local cross-entropy thresholding based on co-occurrence matrix. Comput Electr Eng 37:757–767

    Article  Google Scholar 

  47. Sahoo P, Wilkins C, Yeager J (1997) Threshold selection using Renyi’s entropy. Pattern Recognit 30:71–84

    Article  Google Scholar 

  48. Sarkar S, Sen N, Kundu A et al (2012) A differential evolutionary multilevel segmentation of near infra-red images using renyi’s entropy. In: Proceedings of the international conference on frontiers of intelligent computing: theory and applications. Springer, Berlin, pp 699–706

    Google Scholar 

  49. Fan S, Yang S, He P, Nie H (2011) Infrared electric image thresholding using two-dimensional fuzzy renyi entropy. Energy Procedia 12:411–419

    Article  Google Scholar 

  50. Sahoo PK, Arora G (2004) A thresholding method based on two-dimensional Renyi’s entropy. Pattern Recognit 37:1149–1161

    Article  Google Scholar 

  51. Tao WB, Tian JW, Liu J (2003) Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognit Lett 24:3069–3078

    Article  Google Scholar 

  52. Yin S, Zhao X, Wang W, Gong M (2014) Efficient multilevel image segmentation through fuzzy entropy maximization and graph cut optimization. Pattern Recognit 47:2894–2907

    Article  Google Scholar 

  53. Tao W, Jin H, Liu L (2007) Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognit Lett 28:788–796

    Article  Google Scholar 

  54. Sanyal N, Chatterjee A, Munshi S (2011) An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation. Expert Syst Appl 38:15489–15498

    Article  Google Scholar 

  55. Tang Y, Di Q, Guan X, Liu F (2008) Threshold selection based on Fuzzy Tsallis entropy and particle swarm optimization. NeuroQuantology 6:412–419

    Google Scholar 

  56. Sarkar S (2013) Multi-level image segmentation based on Fuzzy—Tsallis entropy and differential evolution. In: IEEE international conference on Fuzzy systems, pp 1–8

  57. Mokji MM, Abu Bakar SAR (2007) Adaptive thresholding based on co-occurrence matrix edge information. J Comput 2:44–52

    Article  Google Scholar 

  58. Panda R, Agrawal S, Bhuyan S (2013) Edge magnitude based multilevel thresholding using Cuckoo search technique. Expert Syst Appl 40:7617–7628

    Article  Google Scholar 

  59. Chang CI, Du Y, Wang J et al (2006) Survey and comparative analysis of entropy and relative entropy thresholding techniques. IEEE Proc Vision Image Signal Process 153:837–850

    Article  Google Scholar 

  60. Singh J, Koley G S, et al (2015) A novel segmentation approach for noisy medical images using intuitionistic fuzzy divergence with neighbourhood-based membership function. J Microsc 257:187–200

    Article  PubMed  Google Scholar 

  61. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  62. Mohanalin L, Kalra PK, Kumar N (2010) An automatic method to enhance microcalcifications using Normalized Tsallis entropy. Sig Process 90:952–958

    Article  Google Scholar 

  63. Jati A, Singh G, Mukherjee R et al (2014) Automatic leukocyte nucleus segmentation by intuitionistic fuzzy divergence based thresholding. Micron 58:55–65

    Article  PubMed  Google Scholar 

  64. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc. ICNN’95 - international conference neural networks. IEEE, Perth, pp 1942–1948

    Chapter  Google Scholar 

  65. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8:240–255

    Article  Google Scholar 

  66. Shi Y, Eberhart RC (1999) Emperical study of particle swarm optimization. In: IEEE congress evolutionary computation. IEEE, Washington, DC, 101–106

    Google Scholar 

  67. Ling SH, Iu HHC, Chan KY et al (2008) Hybrid particle swarm optimization with wavelet mutation and its industrial applications. In: IEEE transactions on systems, man, and cybernetics, pp 743–763

  68. BraTS 2012 website: http://www2.imm.dtu.dk/projects/BRATS2012

  69. Menze BH, Jakab A, Bauer S et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024

    Article  PubMed  PubMed Central  Google Scholar 

  70. Islam A, Reza SMS, Iftekharuddin KM (2013) Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans Biomed Eng 60:3204–3215

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bauer S, May C, Dionysiou D et al (2012) Multiscale modeling for image analysis of brain tumor studies. IEEE Trans Biomed Eng 59:25–29

    Article  PubMed  Google Scholar 

  72. Chaira T (2011) A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl Soft Comput 11:1711–1717

    Article  Google Scholar 

  73. Wilcoxon F (2006) Individual comparisons by ranking methods. Biometrics Bull 1:80–83

    Article  Google Scholar 

  74. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Sandeep Singh Pawar (Advance Diagnostic Centre, Ludhiana, Punjab) for providing the clinical data and the interpretations of the present work.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taranjit Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This research has been approved by the Research Advisory Committee of the Institute. Also, all of the procedures performed during the image acquisition process comply with the ethical standards of the diagnostic centre from which the image data have been taken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Saini, B.S. & Gupta, S. A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation. Australas Phys Eng Sci Med 41, 41–58 (2018). https://doi.org/10.1007/s13246-017-0609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0609-4

Keywords

Navigation