Skip to main content
Log in

The first Rs of radiotherapy: or standing on the shoulders of giants

  • Invited Commentary on the work of Rodney Withers
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The name of the Australian-born professor, Rodney H. Withers, is highly acknowledged among radiation biologists, radiation oncologists, medical physicists and other professionals. The list of his contributions towards knowledge enhancement and better understanding of the biological basis for radiotherapy is a long one. However, there are certain landmarks of Dr. Withers’ research that are worth emphasizing, as they have marked several paths along the development of radiotherapy: the four Rs of radiotherapy, the accelerated tumour growth during treatment, the time-factor in radiotherapy, altered fractionation schemes and their corresponding isoeffect curves, normal tissue tolerance and organ architecture—just to name a few. This paper is a tribute to the work of Rodney Withers, which, far from being exhaustive, marks some of his greatest contributions to radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. http://www.radres.org/news/220956/H.-Rodney-Withers—2015.htm

  2. http://people.healthsciences.ucla.edu

  3. Withers HR (1970) Repair of sublethal radiation injury in cells of normal and malignant tissues. In: Proceedings of 4th International Congress of Radiation Research

  4. Withers HR (1975) The four R’s of radiotherapy. In: Lett JT, Alder H (eds) Advances in radiation biology, vol 5. Academic Press, New York, pp 241–271

    Google Scholar 

  5. Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture. 1. Repair of X-ray damage in surviving Chinese hamster cells. Radiat Res 13:556–593

    Article  PubMed  CAS  Google Scholar 

  6. Elkind MM, Sutton-Gilbert H, Moses W, Alescio T, Swain W (1965) Radiation response of mammalian cells grown in culture. V. Temperature dependence of the repair of X-ray damage in surviving cells (aerobic and hypoxic). Rad Res 25:359–376

    Article  CAS  Google Scholar 

  7. Withers HR (1970) Capacity for repair in cells of normal and malignant tissues. In: Time and dose relationships in radiation biology as applied to radiotherapy. In: NCI-AEC. Conference, Carmel, California, 1969 BNL 50203 (C57), pp 54–65

  8. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC (1953) The concentration of oxygen dissolved in tissues at the same time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Article  PubMed  CAS  Google Scholar 

  9. Withers HR (1985) Biologic basis for altered fractionation schemes. Cancer 55(S9):2086–2095

    Article  PubMed  CAS  Google Scholar 

  10. Withers HR, Peters LJ, Thames HD, Fletcher GH (1982) Hyperfractionation. Int J Radiat Oncol Biol Phys 8:1807–1809

    Article  PubMed  CAS  Google Scholar 

  11. Withers HR (1975) Cell cycle redistribution as a factor in multifraction irradiation. Radiology 114(1):199–202

    Article  PubMed  CAS  Google Scholar 

  12. Withers HR, Taylor JMG, Maciejewski B (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27:131–146

    Article  PubMed  CAS  Google Scholar 

  13. Maciejewski B, Withers HR, Taylor JM, Hliniak A (1989) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys 16:831–843

    Article  PubMed  CAS  Google Scholar 

  14. Withers HR (1993) Treatment-induced accelerated human tumour growth. Semin Radiat Oncol 3:135–143

    Article  PubMed  Google Scholar 

  15. Withers HR, Maciejewski B, Taylor JMG (1989) Biology of options in dose fractionation. In: McNally NJ (ed) BIR Report 19: the scientific basis of modern radiotherapy. British Institute of Radiology, London

    Google Scholar 

  16. Withers HR (1970) Cellular kinetics of intestinal mucosa after irradiation. In: Burdette WJ (ed) Carcinoma of the colon and antecedent epithelium. Charles Thomas, Springfield, pp 243–257

    Google Scholar 

  17. Withers HR, Elkind MM (1969) Radiosensitivity and fractionation response of crypt cells of mouse jejunum. Radiat Res 38:598–613

    Article  PubMed  CAS  Google Scholar 

  18. Peters LJ, Withers HR, Thames HD, Fletcher GH (1981) The problem: tumor radioresistance in clinical radiotherapy. Int J Radiat Oncol Biol Phys 8:101–108

    Article  Google Scholar 

  19. Steel GG, McMillan TJ, Peacock JH (1989) The 5 Rs of radiotherapy. Int J Radiat Biol 56:1045–1048

    Article  PubMed  CAS  Google Scholar 

  20. Withers HR (1992) Clinical implications of accelerated tumor growth during cytotoxic therapies. In: Fortner JG, Rhoads JE (eds) Accomplishments in cancer research 1991. Lippincott, Philadelphia

    Google Scholar 

  21. Withers HR (1967) Recovery and repopulation in vivo by mouse skin epithelial cells during fractionated irradiation. Radiat Res 32:227–239

    Article  PubMed  CAS  Google Scholar 

  22. Dörr W (1997) Three A’s of repopulation during fractionated irradiation of squamous epithelia: asymmetry loss, acceleration of stem-cell divisions and abortive divisions. Int J Radiat Biol 72:635–643

    Article  PubMed  Google Scholar 

  23. Hansen O, Grau C, Bentzen S, Overgaard J (1996) Repopulation in the SCCVII squamous cell carcinoma assessed by an in vivo-in vitro excision assay. Radiother Oncol 39:137–144

    Article  PubMed  CAS  Google Scholar 

  24. Trott K, Kummermehr J (1991) Accelerated repopulation in tumours and normal tissues. Radiother Oncol 22:159–160

    Article  PubMed  CAS  Google Scholar 

  25. Withers HR (1965) The response of normal tissues to irradiation. PhD Thesis, University of London

  26. Withers HR (1986) Predicting late normal tissue responses. Int J Radiat Oncol Biol Phys 12(4):693–698

    Article  PubMed  CAS  Google Scholar 

  27. Dörr W (2009) Pathogenesis of normal-tissue side-effects. In: Joiner M, van der Kogel A (eds), Basic clinical radiobiology, 4th ed. CRS Press, Boca Raton, Florida, pp. 169-190

  28. Withers HR, Elkind MM (1970) Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol 17:261–267

    Article  CAS  Google Scholar 

  29. Thames HD, Withers HR (1980) Test of equal effect per fraction and estimation of initial clonogen number in microcolony assays of survival after fractionated irradiation. Br J Radiol 53:1071–1077

    Article  PubMed  Google Scholar 

  30. Withers HR, Peters LJ (1980) Biological aspects of radiation therapy. In: Fletcher GH (ed) Textbook of radiotherapy, 3rd edn. Lea & Febiger, Philadelphia, pp 103–180

    Google Scholar 

  31. Withers HR, Taylor JM, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759

    Article  PubMed  CAS  Google Scholar 

  32. Withers RH (1999) Radiation biology and treatment options in radiation oncology. Cancer Res (Suppl) 59:1676s–1684s

    CAS  Google Scholar 

  33. Withers HR, Peters LJ, Taylor JM, Owen JB, Morrison WH, Schultheiss TE et al (1995) Late normal tissue sequelae from radiation therapy for carcinoma of the tonsil: patterns of fractionation study of radiobiology. Int J Radiat Oncol Biol Phys 33(3):563–568

    Article  PubMed  CAS  Google Scholar 

  34. Peters L, Withers RH (1997) Applying radiobiological principles to combined modality treatment of head and neck cancer—the time factor. Int J Radiat Oncol Biol Phys 39(4):831–836

    Article  PubMed  CAS  Google Scholar 

  35. Shukovsky LJ, Fletcher GH, Montague ED, Withers HR (1976) Experience with twice-a-day fractionation in clinical radiotherapy. AJR Am J Roentgenol 126(1):155–162

    Article  PubMed  CAS  Google Scholar 

  36. Withers HR, Maciejewski B, Taylor JM, Hliniak A (1988) Accelerated repopulation in head and neck cancer. Front Radiat Ther Oncol 22:105–110

    Article  PubMed  CAS  Google Scholar 

  37. Maciejewski B, Withers HR, Taylor JM, Hliniak A (1989) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys 16(3):831–843

    Article  PubMed  CAS  Google Scholar 

  38. Maciejewski B, Withers HR, Taylor JM, Hliniak A (1990) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx. Part 2. Normal tissue responses: acute and late effects. Int J Radiat Oncol Biol Phys 18(1):101–111

    Article  PubMed  CAS  Google Scholar 

  39. Taylor JM, Withers RH, Mendenhall WM (1990) Dose-time considerations of head and neck squamous cell carcinomas treated with irradiation. Radiother Oncol 17(2):95–102

    Article  PubMed  CAS  Google Scholar 

  40. Taylor JM, Withers RH (1992) Dose-time factors in head and neck data. Radiother Oncol 25(4):313–315

    Article  PubMed  CAS  Google Scholar 

  41. Withers HR, Peters LJ, Taylor JM, Owen JB, Morrison WH, Schultheiss TE et al (1995) Local control of carcinoma of the tonsil by radiation therapy: an analysis of patterns of fractionation in nine institutions. Int J Radiat Oncol Biol Phys 33(3):549–562

    Article  PubMed  CAS  Google Scholar 

  42. Mackillop WJ, Bates JHT, O’Sullivan B, Withers RH (1996) The effect of delay in treatment on local control by radiotherapy. Int J Radiat Oncol Biol Phys 34(1):243–250

    Article  PubMed  CAS  Google Scholar 

  43. Thames HD, Peters LJ, Withers HR, Fletcher GH (1983) Accelerated fractionation vs hyperfractionation: rationales for several treatments per day. Int J Radiat Oncol Biol Phys 9:127–138

    Article  PubMed  Google Scholar 

  44. Withers HR, Thames HD, Peters LJ (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1:187–191

    Article  PubMed  CAS  Google Scholar 

  45. Maciejewski B, Taylor JMG, Withers HR (1986) Alpha/beta value and the importance of size of dose per fraction for late complications in the supraglottic larynx. Radiother Oncol 7:323–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Ministry of National Education, CNCS-UEFISCDI, Project No. PN-II-ID-PCE-2012-4-0067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana G. Marcu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcu, L.G. The first Rs of radiotherapy: or standing on the shoulders of giants. Australas Phys Eng Sci Med 38, 531–541 (2015). https://doi.org/10.1007/s13246-015-0387-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0387-9

Keywords

Navigation