Skip to main content
Log in

Fluid–Structure Computational Analysis to Investigate the Link between Early Atherogenic Events and the Hemodynamic Environment in an Experimental Model of Intimal Thickening

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The main hemodynamic forces acting on the vessel wall are the wall shear stress (WSS), caused by the friction of the flowing blood on the endothelial surface, and the circumferential stress caused by blood pressure, acting on endothelial cells and on smooth muscle cells. Experimental studies on the effects of disturbed flow contribute to our understanding of the pathophysiological mechanisms of vascular diseases, helping in ameliorating therapeutic interventions. The perivascular placement of a silastic collar around the carotid artery represents an established model of intimal thickening in rabbits and mice for testing mechanistic hypothesis on the pathogenesis of atherosclerosis and for assessment of anti-atherosclerotic interventions. In this work we adopted a one-way coupled, fluid–structure interaction approach to investigate the immediate fluid-dynamic alterations induced by perivascular collar placement on rabbit common carotid artery and establish a correlation between the early atherogenic events and the modifications of the hemodynamic environment. The results from this computational study help quantify the role of the local fluid-dynamics among the possible factors promoting the atherogenic processes in this experimental model. In particular, values of WSS and circumferential stress lower than in the physiological situation were found in the arterial region between the two collar-vessel contact points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alastruey, J., S. R. Nagel, B. A. Nier, A. A. E. Hunt, P. D. Weinberg, and J. Peiró. Modelling pulse wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis. J. Biomech. 42:2116–2123, 2009.

    Article  Google Scholar 

  2. Baetta, R., M. Camera, C. Comparato, C. Altana, M. D. Ezekowitz, and E. Tremoli. Fluvastatin reduces tissue factor expression and macrophage accumulation in carotid lesions of cholesterol-fed rabbits in the absence of lipid lowering. Arterioscler. Thromb. Vasc. Biol. 22:692–698, 2002.

    Article  Google Scholar 

  3. Baetta, R., A. Granata, M. Canavesi, N. Ferri, L. Arnaboldi, S. Bellosta, P. Pfister, and A. Corsini. Everolimus inhibits monocyte/macrophage migration in vitro and their accumulation in carotid lesions of cholesterol-fed rabbits. J. Pharmacol. Exp. Ther. 328:419–425, 2009.

    Article  Google Scholar 

  4. Baetta, R., F. Silva, C. Comparato, M. Uzzo, I. Eberini, S. Bellosta, E. Donetti, and A. Corsini. Perivascular carotid collar placement induces neointima formation and outward arterial remodeling in mice independent of apolipoprotein e deficiency or western-type diet feeding. Atherosclerosis 195:112–124, 2007.

    Article  Google Scholar 

  5. Baetta, R., M. Soma, C. De-Fraja, C. Comparato, C. Teruzzi, L. Magrassi, and E. Cattaneo. Upregulation and activation of stat6 precede vascular smooth muscle cell proliferation in carotid artery injury model. Arterioscler. Thromb. Vasc. Biol. 20:931–939, 2000.

    Article  Google Scholar 

  6. Booth, B. P., and H. L. Fung. Contribution of vascular tissue to the antiplatelet activity of sodium nitroprusside. J. Cardiovasc. Pharm. 32:129–133, 1998.

    Article  Google Scholar 

  7. Booth, R. F., J. F. Martin, A. C. Honey, D. G. Hassall, J. E. Beesley, and S. Moncada. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis 76:257–268, 1989.

    Article  Google Scholar 

  8. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling—molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49:2379–2393, 2007.

    Article  Google Scholar 

  9. Cheng, C., D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. Daemen, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753, 2006.

    Article  Google Scholar 

  10. Chien, S., S. Li, and J. Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169, 1998.

    Article  Google Scholar 

  11. Chiu, J.-J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.

    Article  Google Scholar 

  12. Dardik, A., L. L. Chen, J. Frattini, H. Asada, F. Aziz, F. A. Kudo, and B. E. Sumpio. Differential effects of orbital and laminar shear stress on endothelial cells. J. Vasc. Surg. 41:869–880, 2005.

    Article  Google Scholar 

  13. De Meyer, G. R., M. F. Hoylaerts, M. M. Kockx, H. Yamamoto, A. G. Herman, and H. Bult. Intimal deposition of functional von Willebrand factor in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 19:2524–2534, 1999.

    Article  Google Scholar 

  14. De Meyer, G. R., M. M. Kockx, K. M. Cromheeke, C. I. Seye, A. G. Herman, and H. Bult. Periadventitial inducible nitric oxide synthase expression and intimal thickening. Arterioscler. Thromb. Vasc. Biol. 20:1896–1902, 2000.

    Article  Google Scholar 

  15. De Meyer, G. R. Y., D. J. M. Van Put, M. M. Kockx, P. Van Schil, R. Bosmans, H. Bult, N. Buyssens, R. Vanmaele, and A. G. Herman. Possible mechanisms of collar-induced intimal thickening. Arterioscler. Thromb. Vasc. Biol. 17:1924–1930, 1997.

    Article  Google Scholar 

  16. Donetti, E., R. Baetta, C. Comparato, C. Altana, S. Sartore, R. Paoletti, P. Castano, G. Gabbiani, and A. Corsini. Polymorphonuclear leukocyte-myocyte interaction: an early event in collar-induced rabbit carotid intimal thickening. Exp. Cell. Res. 274:197–206, 2002.

    Article  Google Scholar 

  17. Gimbrone, M. A. Vascular endothelium, hemodynamic forces, and atherogenesis. Am. J. Pathol. 155:1–5, 1999.

    Article  Google Scholar 

  18. Inouye, A., and H. Kosaka. A study with the electromagnetic flow-meter of flow patterns in carotid and femoral arteries of rabbits and dogs. J. Physiol. 147:209–220, 1959.

    Google Scholar 

  19. Jackson, Z. S., A. I. Gotlieb, and B. L. Langille. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90:918–925, 2002.

    Article  Google Scholar 

  20. Kamiya, A., R. Bukhari, and T. Togawa. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol. 46:127–137, 1984.

    Google Scholar 

  21. Kleinstreuer, C., S. Hyun, J. R. Buchanan, P. W. Longest, J. P. Archie, and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.

    Article  Google Scholar 

  22. Kockx, M. M., G. R. De Meyer, W. A. Jacob, H. Bult, and A. G. Herman. Triphasic sequence of neointimal formation in the cuffed carotid artery of the rabbit. Arterioscler. Thromb. Vasc. Biol. 12:1447–1457, 1992.

    Article  Google Scholar 

  23. Laitinen, M., I. Zachary, G. Breier, T. Pakkanen, T. Hakkinen, J. Luoma, H. Abedi, W. Risau, M. Soma, M. Laakso, J. F. Martin, and S. Yla-Herttuala. VEGF gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum. Gene Ther. 8:1737–1744, 1997.

    Article  Google Scholar 

  24. Libby, P. Inflammation in atherosclerosis. Nature 420:868–874, 2002.

    Article  Google Scholar 

  25. Matsumoto, T., E. Okumura, Y. Miura Y, and M. Sato. Mechanical and dimensional adaptation of rabbit carotid artery cultured in vitro. Med. Biol. Eng. Comput. 37:252–256, 1999.

  26. Matthys, K. E., C. E. Van Hove, M. M. Kockx, L. J. Andries, N. Van Osselaer, A. G. Herman, and H. Bult. Local application of LDL promotes intimal thickening in the collared carotid artery of the rabbit. Arterioscl. Thromb. Vasc. Biol. 17:2423–2429, 1997.

    Article  Google Scholar 

  27. Nam, D., C.-W. Ni, A. Rezvan, J. Suo, K. Budzyn, A. Llanos, D. Harrison, D. Giddens, and H. Jo. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am. J. Physiol.-Heart C. 297:H1535–H1543, 2009.

  28. Ni, C.-W., H. Qiu, A. Rezvan, K. Kwon, D. Nam, D. J. Son, J. E. Visvader, and H. Jo. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 116:E66–E73, 2010.

    Article  Google Scholar 

  29. Nicholls, S. J., G. J. Dusting, B. Cutri, S. Bao, G. R. Drummond, K. A. Rye, and P. J. Barter. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111:1543–1550, 2005.

    Article  Google Scholar 

  30. Passerini, A. G., D. C. Polacek, C. Z. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, W. F. Pritchard, S. Powell, G. Y. Chang, C. J. Stoeckert, and P. F. Davies. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl Acad. Sci. USA 101:2482–2487, 2004.

    Article  Google Scholar 

  31. Soma, M. R., E. Donetti, C. Parolini, G. Mazzini, C. Ferrari, R. Fumagalli, and R. Paoletti. HMG CoA reductase inhibitors. In vivo effects on carotid intimal thickening in normocholesterolemic rabbits. Arterioscl. Thromb. Vasc. Biol. 13:571–578, 1993.

    Article  Google Scholar 

  32. Soma, M. R., E. Donetti, C. Parolini, C. R. Sirtori, R. Fumagalli, and G. Franceschini. Recombinant apolipoprotein a-imilano dimer inhibits carotid intimal thickening induced by perivascular manipulation in rabbits. Circ. Res. 76:405–411, 1995.

    Article  Google Scholar 

  33. Soma, M. R., E. Donetti, R. Seregni, L. Barberi, R. Fumagalli, R. Paoletti, and A. L. Catapano. Effect of lacidipine on fatty and proliferative lesions induced in hypercholesterolaemic rabbits. Brit. J. Pharmacol. 118:215–219, 1996.

    Article  Google Scholar 

  34. Soma, M. R., M. Natali, E. Donetti, R. Baetta, P. Farina, A. Leonardi, C. Comparato, L. Barberi, and A. L. Catapano. Effect of lercanidipine and its (r)-enantiomer on atherosclerotic lesions induced in hypercholesterolemic rabbits. Brit. J. Pharmacol. 125:1471–1476, 1998.

    Article  Google Scholar 

  35. Ström, A., M. Wigren, A. Hultgardh-Nilsson, A. Saxena, M. F. Gomez, S. Cardell, G. N. Fredrikson, and J. Nilsson. Involvement of the CD1d-natural killer T cell pathway in neointima formation after vascular injury. Circ. Res. 101:83–89, 2007.

    Article  Google Scholar 

  36. Tzima, E. Role of small gtpases in endothelial cytoskeletal dynamics and the shear stress response. Circ. Res. 98:176–185, 2006.

    Article  Google Scholar 

  37. Varghese, S. S., and S. H. Frankel. Numerical modeling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Eng. 125:445–460, 2003.

    Article  Google Scholar 

  38. Varghese, S. S., S. H. Frankel, and P. F. Fischer. Modeling transition to turbulence in eccentric stenotic flows. J. Biomech. Eng. 130:014503, 2008.

    Article  Google Scholar 

  39. von der Thusen, J. H., T. J. van Berkel, and E. A. Biessen. Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein e-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103:1164–1170, 2001.

    Article  Google Scholar 

  40. Wang, P. T., Z. Q. Shu, L. Q. He, S. X. Chen, Y. Z. Wang, and X. L. Wang. The structural and cellular viability in cryopreserved rabbit carotid arteries. J. Surg. Res. 131:241–251, 2006.

    Article  Google Scholar 

  41. Weintraub, W. S., S. R. Daniels, L. E. Burke, B. A. Franklin, D. C. Goff, Jr., L. L. Hayman, D. Lloyd-Jones, D. K. Pandey, E. J. Sanchez, A. P. Schram, and L. P. Whitsel. Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association. Circulation. 124:967–990, 2011.

  42. Willett, N. J., R. C. Long, Jr., K. Maiellaro-Rafferty, R. L. Sutliff, R. Shafer, J. N. Oshinski, D. P. Giddens, R. E. Guldberg, and W. R. Taylor. An in vivo murine model of low-magnitude oscillatory wall shear stress to address the molecular mechanisms of mechanotransduction-brief report. Arterioscl. Thromb. Vasc. Biol. 30:2099–2102, 2010.

    Article  Google Scholar 

  43. Windberger, U., A. Bartholovitsch, R. Plasenzotti, K. J. Korak, and G. Heinze. Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Exp. Physiol. 88:431–440, 2003.

    Article  Google Scholar 

  44. Yakhshi-Tafti, E., M. Tafazzoli-Shadpour, S. H. Alavi, and A. Mojra. Coupled fluid-wall modelling of steady flow in stenotic carotid arteries. J. Med. Eng. Technol. 33:544–550, 2009.

    Article  Google Scholar 

  45. Yao, H., K. C. Ang, J. H. Yeo, and E. K. Sim. Computational modelling of blood flow through curved stenosed arteries. J. Med. Eng. Technol. 24:163–168, 2000.

    Article  Google Scholar 

  46. Zhang, J.-M., L. P. Chua, D. N. Ghista, S. C. M. Yu, and Y. S. Tan. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model. Med. Biol. Eng. Comput. 46:689–699, 2008.

    Article  Google Scholar 

  47. Zhang, X., X. Zhu, and B. Chen. Inhibition of collar-induced carotid atherosclerosis by recombinant apoA-I cysteine mutants in apoE-deficient mice. J. Lipid Res. 51:3434–3442, 2010.

    Article  Google Scholar 

  48. Zhao, S. M., A. Suciu, T. Ziegler, J. E. Moore, E. Burki, J. J. Meister, and H. R. Brunner. Synergistic effects of fluid shear-stress and cyclic circumferential stretch on vascular endothelial-cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol. 15:1781–1786, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Dubini.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donetti, E., Decorato, I., Bertarelli, E. et al. Fluid–Structure Computational Analysis to Investigate the Link between Early Atherogenic Events and the Hemodynamic Environment in an Experimental Model of Intimal Thickening. Cardiovasc Eng Tech 3, 282–291 (2012). https://doi.org/10.1007/s13239-012-0100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-012-0100-z

Keywords

Navigation