Skip to main content

Advertisement

Log in

The tale of tapetum: from anther walls to pollen wall

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Tapetum plays the most dynamic role in the development of the male germline in plants involving a time dependent shift from secretory and biosynthetic activity to its differentiation induced programmed cell death. Several genes regulating the specification of the tapetum and its subsequent impact on the cell fate of microsporocytes have been identified from genetic screening of male sterile lines and with the advent of single cells sequencing. In this review we have discussed the signaling mechanisms operational during the establishment of tapetum from the anther primordia, the biogenesis and role of miRNAs from tapetal cells in microsporogenesis, the biosynthetic and secretory functions of these specialized cells, cytomorphic changes in the tapetal cells during different stages, and finally the significance of its degradation in pollen grain development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 1997;12:615–23.

    Article  CAS  PubMed  Google Scholar 

  2. Aldridge B. The Role of Tapetal Nurse Cells in Supporting Male Germline Functions. Norwich: University of East Anglia; 2018.

    Google Scholar 

  3. Åstrand J, Knight C, Robson J, Talle B, Wilson ZA. Evolution and diversity of the angiosperm anther: trends in function and development. Plant reproduction. 2021;34:307–19.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Battat M, Eitan A, Rogachev I, Hanhineva K, Fernie A, Tohge T, Beekwilder J, Aharoni A. A MYB triad controls primary and phenylpropanoid metabolites for pollen coat patterning. Plant Physiol. 2019;180:87–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bélanger S, Pokhrel S, Czymmek K, Meyers BC. Premeiotic, 24-nucleotide reproductive PhasiRNAs are abundant in anthers of wheat and barley but not rice and maize. Plant Physiol. 2020;184:1407–23.

    PubMed  PubMed Central  Google Scholar 

  6. Bhatnagar S, Dantu P. The embryology of angiosperms. Noida: Vikas Publishing House; 2015.

    Google Scholar 

  7. Bhatnagar S, Johri B. Development of angiosperm seeds. Seed Biol Import Dev germination. 1972;1:77.

    Article  Google Scholar 

  8. Biswas R, Chaudhuri, S. . AtHMGB15 regulates tapetal apoptosis in pollen development and actin dynamics during pollen germination in arabidopsis. . Plant Reproduction 2024.

  9. Blackmore S, Wortley AH, Skvarla JJ, Rowley JR. Pollen wall development in flowering plants. New Phytol. 2007;174:483–98.

    Article  CAS  PubMed  Google Scholar 

  10. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46.

    Article  CAS  PubMed  Google Scholar 

  11. Canales C, Bhatt AM, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol. 2002;12:1718–27.

    Article  CAS  PubMed  Google Scholar 

  12. Chapman G. The tapetum. In: International review of cytologyElsevier, 1987, p. 111–125.

  13. Chen W, Lv M, Wang Y, Wang P-A, Cui Y, Li M, Wang R, Gou X, Li J. BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nat Commun. 2019;10:4164.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell. 2005;17:3350–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui J, You C, Zhu E, Huang Q, Ma H, Chang F. Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell. 2016;28:1078–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, Kopka J, Hause B. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol. 2015;13:1–18.

    Article  CAS  Google Scholar 

  17. Doll NM. Stop vitamins: Low levels of ascorbic acid regulate the transition from cell proliferation to differentiation in Arabidopsis tapetum. US: Oxford University Press; 2023.

    Google Scholar 

  18. Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: Mobile elements that govern anther development. Plant Reprod. 2021;34:1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Echlin P. Production of sporopollenin by the tapetum. In: SporopolleninElsevier, 1971, p. 220–247.

  20. Echlin P. The role of the tapetum during microsporogenesis of angiosperms. In: PollenElsevier, 1971, p. 41–61.

  21. El-Ghazaly G. Tapetum and orbicules [Ubisch bodies]: development, morphology and role of pollen grains and tapetal orbicules in allergenicity. In: Fertilization in Higher Plants: Molecular and Cytological AspectsSpringer, 1999, p. 157–173.

  22. El-Ghazaly G, Chaudhary R. Morphology and taxonomic application of orbicules [Ubisch bodies] in the genus Euphorbia. Grana. 1993;32:26–32.

    Article  Google Scholar 

  23. Fábián A, Péntek BK, Soós V, Sági L. Heat stress during male meiosis impairs cytoskeletal organization, spindle assembly and tapetum degeneration in wheat. Front Plant Sci. 2024;8(14):1314021.

    Article  Google Scholar 

  24. Farinati S, Draga S, Betto A, Palumbo F, Vannozzi A, Lucchin M, Barcaccia G. Current insights and advances into plant male sterility: New precision breeding technology based on genome editing applications. Front Plant Sci. 2023;13(14):1223861.

    Article  Google Scholar 

  25. Fei H, Sawhney VK. MS32-regulated timing of callose degradation during microsporogenesisin Arabidopsis is associated with the accumulation of stacked rough ER in tapetal cells. Sex Plant Reprod. 1999;12:188–93.

    Article  CAS  Google Scholar 

  26. Feng J, Qin M, Yao L, Li Y, Han R, Ma L. The N-terminal acetyltransferase Naa50 regulates tapetum degradation and pollen development in Arabidopsis. Plant Sci. 2022;316:111180.

    Article  CAS  PubMed  Google Scholar 

  27. Geng P, Zhang S, Liu J, Zhao C, Wu J, Cao Y, Fu C, Han X, He H, Zhao Q. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiol. 2020;182:1272–83.

    Article  CAS  PubMed  Google Scholar 

  28. Goldberg RB, Beals TP, Sanders PM. Anther development: basic principles and practical applications. Plant Cell. 1993;5:1217.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gómez JF, Talle B, Wilson ZA. Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol. 2015;57:876–91.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goodman K, Paez-Valencia J, Pennington J, Sonntag A, Ding X, Lee HN, Ahlquist PG, Molina I, Otegui MS. ESCRT components ISTL1 andLIP5 are required for tapetal function and pollen viability. Plant Cell. 2021;33:2850–68.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gotelli M, Lattar E, Zini LM, Rosenfeldt S, Galati B. Review on tapetal ultrastructure in angiosperms. Planta. 2023;257:100.

    Article  CAS  PubMed  Google Scholar 

  32. Grunewald S, Marillonnet S, Hause G, Haferkamp I, Neuhaus HE, Veß A, Hollemann T, Vogt T. The tapetal major facilitator NPF2. 8 is required for accumulation of flavonol glycosides on the pollen surface in Arabidopsis thaliana. Plant Cell. 2020;32(5):1727–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo X, Li L, Liu X, Zhang C, Yao X, Xun Z, Zhao Z, Yan W, Zou Y, Liu D. MYB2 is important for tapetal PCD and pollen development by directly activating protease expression in Arabidopsis. Int J Mol Sci. 2022;23:3563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heslop-Harrison J. Origin of exine. Nature. 1962;195:1069–71.

    Article  CAS  Google Scholar 

  35. Higginson T, Li SF, Parish RW. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 2003;35:177–92.

    Article  CAS  PubMed  Google Scholar 

  36. Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol. 2008;49:1429–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Honys D, Reňák D, Twell D. Male gametophyte development and function. Plant Biotechnol. 2006;1:209–24.

    Google Scholar 

  38. Hord CL, Chen C, DeYoung BJ, Clark SE, Ma H. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell. 2006;18:1667–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsieh K, Huang AH. Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol. 2004;136:3427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsieh K, Huang AH. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell. 2007;19:582–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell. 2011;23:515–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hua M, Yin W, Fernández Gómez J, Tidy A, Xing G, Zong J, Shi S, Wilson ZA. Barley TAPETAL DEVELOPMENT and FUNCTION1 [HvTDF1] gene reveals conserved and unique roles in controlling anther tapetum development in dicot and monocot plants. New Phytol. 2023;240:173–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y-H, Yu J-Q, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010;153:1526–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang J, Zhang T, Linstroth L, Tillman Z, Otegui MS, Owen HA, Zhao D. Control of anther cell differentiation by the small protein ligand TPD1 and its receptor EMS1 in Arabidopsis. PLoS Genet. 2016;12:e1006147.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang TH, Suen DF. Iron insufficiency in floral buds impairs pollen development by disrupting tapetum function. Plant J. 2021;108:244–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K. Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell. 2007;19:3549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jakobsen MK, Poulsen LR, Schulz A, Fleurat-Lessard P, Møller A, Husted S, Schiøtt M, Amtmann A, Palmgren MG. Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a type V P-type ATPase. Genes Dev. 2005;19:2757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang C, Wang J, Leng H-N, Wang X, Liu Y, Lu H, Lu M-Z, Zhang J. Transcriptional regulation and signaling of developmental programmed cell death in plants. Front Plant Sci. 2021;12:702928.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jogam P, Savitikadi P, Sandhya D, Ellendula R, Peddaboina V, Allini VR, Abbagani S. Tapetum-specific expression of cysteine protease induces male sterility in tomato. Plant Gene. 2024;38:100454.

    Article  CAS  Google Scholar 

  50. Jung K-H, Han M-J, Lee Y-S, Kim Y-W, Hwang I, Kim M-J, Kim Y-K, Nahm BH, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell. 2005;17:2705–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K. Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol. 2006;47:784–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kelliher TJ. Germinal and somatic cell fate acquisition in early maize anther development: morphogenetic mechanisms underlying pre-meiotic differentiation. Stanford University, 2013.

  53. Kuang Y-F, Yue L, Balslev H, Liao J-P. Pollen development in three selected species of Rubiaceae provides ontogenetic evidence for pollen evolution. Rev Palaeobot Palynol. 2021;289:104413.

    Article  Google Scholar 

  54. Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy. 2014;10:878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lallemand B, Erhardt M, Heitz T, Legrand M. Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol. 2013;162:616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lavania UC, Basu S, Kushwaha JS, Lavania S. Seasonal temperature variations influence tapetum mitosis patterns associated with reproductive fitness. Genome. 2014;57:517–21.

    Article  PubMed  Google Scholar 

  57. Lei X, Liu B. Tapetum-dependent male meiosis progression in plants: increasing evidence emerges. Front Plant Sci. 2020;10:1667.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell. 2006;18(11):2999–3014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li X-C, Zhu J, Yang J, Zhang G-R, Xing W-F, Zhang S, Yang Z-N. Glycerol-3-phosphate acyltransferase 6 [GPAT6] is important for tapetum development in Arabidopsis and plays multiple roles in plant fertility. Mol Plant. 2012;5:131–42.

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Kim JI, Pysh L, Chapple C. Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol. 2015;169:2409–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu X, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, Owen HA, Zhao D. The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. Plant Physiol. 2009;151:1401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lorz AP. Supernumerary chromonemal reproductions: polytene chromosomes, endomitosis, multiple chromosome complexes, polysomaty. Bot Rev. 1947;13:597–624.

    Article  Google Scholar 

  63. Lou Y, Xu X-F, Zhu J, Gu J-N, Blackmore S, Yang Z-N. The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat Commun. 2014;5:3855.

    Article  CAS  PubMed  Google Scholar 

  64. Lou Y, Zhou HS, Han Y, Zeng QY, Zhu J, Yang ZN. Positive regulation of AMS by TDF1 and the formation of a TDF1–AMS complex are required for anther development in Arabidopsis thaliana. New Phytol. 2018;217:378–91.

    Article  CAS  PubMed  Google Scholar 

  65. Lu J-Y, Xiong S-X, Yin W, Teng X-D, Lou Y, Zhu J, Zhang C, Gu J-N, Wilson ZA, Yang Z-N. MS1, a direct target of MS188, regulates the expression of key sporophytic pollen coat protein genes in Arabidopsis. J Exp Bot. 2020;71:4877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma X, Wu Y, Zhang G. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. J Plant Physiol. 2021;260:153388.

    Article  CAS  PubMed  Google Scholar 

  67. Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1 O 2 and mitochondrial cytochrome-c release. J Plant Res. 2021;134:179–94.

    Article  CAS  PubMed  Google Scholar 

  68. Mićić N, Đurić G, Jovanović Cvetković T, Cvetković M. Pollen functional ability in two indigenous grapevine cultivars in Bosnia and Herzegovina. Eur J Hortic Sci. 2018;83:35–41.

    Article  Google Scholar 

  69. Millar AA, Lohe A, Wong G. Biology and function of miR159 in plants. Plants. 2019;8:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mir Derikvand M, Sierra JB, Ruel K, Pollet B, Do C-T, Thévenin J, Buffard D, Jouanin L, Lapierre C. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta. 2008;227:943–56.

    Article  CAS  PubMed  Google Scholar 

  71. Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K. Receptor-like protein kinase 2 [RPK 2] is a novel factor controlling anther development in Arabidopsis thaliana. Plant J. 2007;50:751–66.

    Article  CAS  PubMed  Google Scholar 

  72. Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 2010;154:1492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nagata K, Abe M. A conserved mechanism determines the activity of two pivotal transcription factors that control epidermal cell differentiation in Arabidopsis thaliana. J Plant Res. 2023;136:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nan G-L, Teng C, Fernandes J, O’Connor L, Meyers BC, Walbot V. A cascade of bHLH-regulated pathways programs maize anther development. Plant Cell. 2022;34:1207–25.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Neiva IP, Moura MF. Evaluation of mitotic activity in tapetal cells of grapevine [Vitis L.]. Not Bot Horti Agrobot Cluj-Napoc. 2021;49:11975.

    Article  Google Scholar 

  76. Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun. 2013;4:1445.

    Article  PubMed  Google Scholar 

  77. Nonomura K-I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell. 2003;15:1728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pacini E. 11 Tapetum and microspore function. Microspores Evolution and Ontogeny: Evolution and Ontogeny 213, 2016.

  79. Pacini E, Franchi G, Hesse M. The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol. 1985;149:155–85.

    Article  Google Scholar 

  80. Pacini E, Hesse M. Pollenkitt–its composition, forms and functions. Flora-Morphol Distrib Funct Ecol Plants. 2005;200:399–415.

    Article  Google Scholar 

  81. Parish RW, Li SF. Death of a tapetum: a programme of developmental altruism. Plant Sci. 2010;178:73–89.

    Article  CAS  Google Scholar 

  82. Parteka LM, Mariath JE, Vanzela AL, Silvério A. Nuclear variations and tapetum polyploidy related to pollen grain development in Passiflora L.[Passifloraceae]. Cell Biol Int. 2022;46:462–74.

    Article  CAS  PubMed  Google Scholar 

  83. Pettitt J. The megaspore wall in gymnosperms: ultrastructure in some zooidogamous forms. Proc R Soc Lond B. 1977;195:497–515.

    Article  Google Scholar 

  84. Phan HA, Iacuone S, Li SF, Parish RW. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell. 2011;23:2209–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pierozzi NI, and Moura MF. Evaluation of mitotic activity in tapetal cells of grapevine [Vitis L.]. 2021.

  86. Pullaiah T, Lakshminarayana K, and Rao BH. Plant Reproduction 2nd Ed. Scientific Publishers, 2019.

  87. Qian Q, Yang Y, Zhang W, Hu Y, Li Y, Yu H, Hou X. A novel Arabidopsis gene RGAT1 is required for GA-mediated tapetum and pollen development. New Phytol. 2021;231:137–51.

    Article  CAS  PubMed  Google Scholar 

  88. Qiao Y, Hou B, Qi X. Biosynthesis and transport of pollen coat precursors in angiosperms. Nat Plants. 2023;9(6):864–76.

    Article  CAS  PubMed  Google Scholar 

  89. Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol. 2010;154:678–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Quilichini TD, Grienenberger E, Douglas CJ. The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Phytochemistry. 2015;113:170–82.

    Article  CAS  PubMed  Google Scholar 

  91. Salazar-Sarasua B, López-Martín MJ, Roque E, Hamza R, Cañas LA, Beltrán JP, Gómez-Mena C. The tapetal tissue is essential for the maintenance of redox homeostasis during microgametogenesis in tomato. Plant J. 2022;112:1281–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sanders PM, Bui AQ, Weterings K, McIntire K, Hsu Y-C, Lee PY, Truong MT, Beals T, Goldberg R. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod. 1999;11:297–322.

    Article  CAS  Google Scholar 

  93. Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J. 2009;60:771–82.

    Article  CAS  PubMed  Google Scholar 

  94. Shamrov II, Anisimova GM, and Babro AA. Tapetum types and forms in angiosperms. In: Proceedings of the Latvian Academy of Sciences Section B Natural, Exact, and Applied Sciences2021, p. 167–179.

  95. Shukla A, Vijayaraghavan M, Chaudhry B. Biology of pollen. Delhi: APH Publishing; 1998.

    Google Scholar 

  96. Sun Z, Liu K, Chen C, Chen D, Peng Z, Zhou R, Liu L, He D, Duan W, Chen H. OsLDDT1, encoding a transmembrane structural DUF726 family protein, is essential for tapetum degradation and pollen formation in rice. Plant Sci. 2023;329:111596.

    Article  CAS  PubMed  Google Scholar 

  97. Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, Heckmann S, Tomancak P, Riha K. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. Elife. 2020;9:e52546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van der Linde K, Walbot V. Pre-meiotic anther development. Curr Top Dev Biol. 2019;131:239–56.

    Article  PubMed  Google Scholar 

  99. Varnier AL, Mazeyrat-Gourbeyre F, Sangwan RS, Clément C. Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J Struct Biol. 2005;152:118–28.

    Article  CAS  PubMed  Google Scholar 

  100. Verma N. Transcriptional regulation of anther development in Arabidopsis. Gene. 2019;689:202–9.

    Article  CAS  PubMed  Google Scholar 

  101. Walbot V, Egger RL. Pre-meiotic anther development: cell fate specification and differentiation. Annu Rev Plant Biol. 2016;67:365–95.

    Article  CAS  PubMed  Google Scholar 

  102. Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant. 2019;12:321–42.

    Article  CAS  PubMed  Google Scholar 

  103. Wang A, Xia Q, Xie W, Datla R, Selvaraj G. The classical Ubisch bodies carry a sporophytically produced structural protein [RAFTIN] that is essential for pollen development. Proc Natl Acad Sci. 2003;100:14487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang CJ, Nan GL, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya IN, Harper L, Egger R, Walbot V, Cande WZ. Maize multiple archesporial cells 1 [mac1], an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development. 2012;139(14):2594–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang K, Guo ZL, Zhou WT, Zhang C, Zhang ZY, Lou Y, Xiong SX, Yao XZ, Fan JJ, Zhu J, Yang ZN. The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation. Plant physiol. 2018;178(1):283–94.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang K, Zhao X, Pang C, Zhou S, Qian X, Tang N, Yang N, Xu P, Xu X, Gao J. IMPERFECTIVE EXINE FORMATION [IEF] is required for exine formation and male fertility in Arabidopsis. Plant Mol Biol. 2021;105:625–35.

    Article  CAS  PubMed  Google Scholar 

  107. Wei S, Ma L. Comprehensive insight into tapetum-mediated pollen development in Arabidopsis thaliana. Cells. 2023;12:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wils CR, Kaufmann K (2017) Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochimica et Biophysica Acta [BBA]-Gene Regulatory Mechanisms. 1860: 95–105.

  109. Wilson ZA, Zhang D-B. From Arabidopsis to rice: pathways in pollen development. J Exp Bot. 2009;60:1479–92.

    Article  CAS  PubMed  Google Scholar 

  110. Wu C, Yang Y, Su D, Yu C, Xian Z, Pan Z, Guan H, Hu G, Chen D, Li Z, Chen R. The SlHB8 acts as a negative regulator in tapetum development and pollen wall formation in tomato. Hortic Res. 2022;9:uhac185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wuestehube LJ, Duden R, Eun A, Hamamoto S, Korn P, Ram R, Schekman R. New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics. 1996;142:393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xie H-T, Wan Z-Y, Li S, Zhang Y. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell. 2014;26:2007–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xing S, Zachgo S. ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J. 2008;53:790–801.

    Article  CAS  PubMed  Google Scholar 

  114. Xiong SX, Lu JY, Lou Y, Teng XD, Gu JN, Zhang C, Shi QS, Yang ZN, Zhu J. The transcription factors MS 188 and AMS form a complex to activate the expression of CYP 703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. Plant J. 2016;88:936–46.

    Article  CAS  PubMed  Google Scholar 

  115. Xu R, Chong L, Zhu Y. Mediator kinase subunit CDK8 phosphorylates transcription factor TCP15 during tomato pollen development. Plant Physiol. 2024;195(1):865–78.

    Article  CAS  PubMed  Google Scholar 

  116. Xue J-S, Yao C, Xu Q-L, Sui C-X, Jia X-L, Hu W-J, Lv Y-L, Feng Y-F, Peng Y-J, Shen S-Y. Development of the middle layer in the anther of Arabidopsis. Front Plant Sci. 2021;12:634114.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell. 2007;19:534–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang L, Qian X, Chen M, Fei Q, Meyers BC, Liang W, Zhang D. Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physiol. 2016;171:2085–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang Z, Liu L, Sun L, Yu P, Zhang P, Abbas A, Xiang X, Wu W, Zhang Y, Cao L. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol. 2019;99:175–91.

    Article  CAS  PubMed  Google Scholar 

  120. Yao X, Hu W, Yang Z-N. The contributions of sporophytic tapetum to pollen formation. Seed Biology. 2022;1:1–13.

    Article  CAS  Google Scholar 

  121. Ye C, Zheng S, Jiang D, Lu J, Huang Z, Liu Z, Zhou H, Zhuang C, Li J. Initiation and execution of programmed cell death and regulation of reactive oxygen species in plants. Int J Mol Sci. 2021;22:12942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Tu J. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J. 2010;63:925–38.

    Article  CAS  PubMed  Google Scholar 

  123. Yi J, Moon S, Lee Y-S, Zhu L, Liang W, Zhang D, Jung K-H, An G. Defective tapetum cell death 1 [DTC1] regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol. 2016;170:1611–23.

    Article  CAS  PubMed  Google Scholar 

  124. Yin GM, Fang YR, Wang JG, Liu Y, Xiang X, Li S, Zhang Y. Arabidopsis HAPLESS13/AP-1µ is critical for pollen sac formation and tapetal function. Plant Sci. 2024;1(341):111998.

    Article  Google Scholar 

  125. Yu J, Zhang D. Molecular control of redox homoeostasis in specifying the cell identity of tapetal and microsporocyte cells in rice. Rice. 2019;12:1–9.

    Article  Google Scholar 

  126. Yuan G, Zou T, He Z, Xiao Q, Li G, Liu S, Xiong P, Chen H, Peng K, Zhang X. SWOLLEN TAPETUM AND STERILITY 1 is required for tapetum degeneration and pollen wall formation in rice. Plant Physiol. 2022;190:352–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhai J, Zhang H, Arikit S, Huang K, Nan G-L, Walbot V, Meyers BC. Spatiotemporally dynamic, cell-type–dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci. 2015;112:3146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang D, Liu D, Lv X, Wang Y, Xun Z, Liu Z, Li F, Lu H. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell. 2014;26:2939–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics. 2011;38:379–90.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang D, Yang L. Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol. 2014;17:49–55.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang J, Zhang L, Liang D, Yang Y, Geng B, Jing P, Qu Y, Huang J. ROS accumulation-induced tapetal PCD timing changes leads to microspore abortion in cotton CMS lines. BMC Plant Biol. 2023;23:1–13.

    Google Scholar 

  132. Zhang J, Zhang L, Liang D, Yang Y, Geng B, Jing P, Qu Y, Huang J. ROS accumulation-induced tapetal PCD timing changes leads to microspore abortion in cotton CMS lines. BMC Plant Biol. 2023;23:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, and Ma H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 [DYT1] encoding a putative bHLH transcription factor. 2006.

  134. Zhao B, Shi H, Wang W, Liu X, Gao H, Wang X, Zhang Y, Yang M, Li R, Guo Y. Secretory COPII protein SEC31B is required for pollen wall development. Plant Physiol. 2016;172:1625–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao F, Zheng Y-F, Zeng T, Sun R, Yang J-Y, Li Y, Ren D-T, Ma H, Xu Z-H, Bai S-N. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 kinase is required for anther development. Plant Physiol. 2017;173:2265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhao G, Shi J, Liang W, Zhang D. ATP binding cassette G transporters and plant male reproduction. Plant Signal Behav. 2016;11:e1136764.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhao Ll, Chen R, Bai Z, Liu J, Zhang Y, Zhong Y, Sun Mx, Zhao P. Autophagy-mediated degradation of integumentary tapetum is critical for embryo pattern formation. Nat Commun. 2024;15:2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhao Q, Guan X, Zhou L, Asad MAU, Xu Y, Pan G, Cheng F. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion. Plant, Cell Environ. 2023;46:1453–71.

    Article  CAS  PubMed  Google Scholar 

  139. Zhao X, De Palma J, Oane R, Gamuyao R, Luo M, Chaudhury A, Hervé P, Xue Q, Bennett J. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J. 2008;54:375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zheng S, Li J, Ma L, Wang H, Zhou H, Ni E, Jiang D, Liu Z, Zhuang C. OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc Natl Acad Sci. 2019;116:7549–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell. 2003;15:1872–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhou L-Z, Juranić M, Dresselhaus T. Germline development and fertilization mechanisms in maize. Mol Plant. 2017;10:389–401.

    Article  CAS  PubMed  Google Scholar 

  143. Zhou X, Huang K, Teng C, Abdelgawad A, Batish M, Meyers BC, and Walbot V. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. bioRxiv 2021.2008. 2024.457464, 2021.

  144. Zhu B-S, Zhu Y-X, Zhang Y-F, Zhong X, Pan K-Y, Jiang Y, Wen C-K, Yang Z-N, Yao X. Ethylene activates the EIN2-EIN3/EIL1 signaling pathway in tapetum and disturbs anther development in Arabidopsis. Cells. 2022;11:3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 2008;55:266–77.

    Article  CAS  PubMed  Google Scholar 

  146. Zhu L, He S, Liu Y, Shi J, Xu J. Arabidopsis FAX1 mediated fatty acid export is required for the transcriptional regulation of anther development and pollen wall formation. Plant Mol Biol. 2020;104:187–201.

    Article  CAS  PubMed  Google Scholar 

  147. Zhu RM, Li M, Li SW, Liang X, Li S, Zhang Y. Arabidopsis ADP-RIBOSYLATION FACTOR-A1s mediate tapetum-controlled pollen development. Plant J. 2021;108:268–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Shubho Chaudhuri and Ruby Biswas would like to sincerely acknowledge the Bose Institute for providing institutional support and infrastructure.

Funding

This work was supported by the Department of Science and Technology, and SERB grant (SERB/2017/000768) Government of India.

Author information

Authors and Affiliations

Authors

Contributions

RB wrote the original draft. SC reviewed and edited the manuscript. All the authors have agreed with this final draft for submission.

Corresponding author

Correspondence to Shubho Chaudhuri.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Sachin Rustgi; Reviewers: KR Shivanna, Samir Sawant, Vimala Yerramilli.

This article is dedicated to Prof. Arun Kumar Sharma to commemorate his Birth Centenary.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Chaudhuri, S. The tale of tapetum: from anther walls to pollen wall. Nucleus 67, 611–630 (2024). https://doi.org/10.1007/s13237-024-00510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-024-00510-5

Keywords