Skip to main content

Advertisement

Log in

Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Cancerous tumors are the result of uncontrolled growth of cells. A growing body of evidence points to cancer stem cells as being the genesis of this uncontrolled growth. Cancer stem cells appear to show dramatic alterations in cellular function when compared to their benign counterparts. Among these alterations are aberrant cell polarity and deviation in asymmetric and symmetric cellular division. Aberrations in cell polarity and orientation of mitotic spindle can compromise the fidelity of asymmetric cellular division and lead to improper cellular differentiation and an overgrowth of immature cancerous cells stem cells. Over the last several decades there has been a rapid acquisition of knowledge of the wide array of mutations in cancer. While the myriad of genetic mutations seemingly have little in common with each other, a thorough review of the literature uncovers that the most widely studied mutations have a mutual effect on altering cell polarity. This article summarizes how mutations of elements of some of the most important signalling pathways can lead to altered polarity and promote oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abudureheman A, Ainiwaer J, Hou Z, Niyaz M, Turghun A, Hasim A, et al. High MLL2 expression predicts poor prognosis and promotes tumor progression by inducing EMT in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2018;144:1025–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adler CE, Fetter RD, Bargmann CI. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nat Neurosci. 2006;9:511–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Álvarez-Quilón A, Serrano-Benítez A, Lieberman JA, Quintero C, Sánchez-Gutiérrez D, Escudero LM, et al. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun. 2014;5:3347.

    PubMed  Google Scholar 

  4. Amin N, Khan A, St Johnston D, Tomlinson I, Martin S, Brenman J, et al. LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye. Proc Natl Acad Sci USA. 2009;106:8941–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP, et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol. 2006;8:1235–45.

    CAS  PubMed  Google Scholar 

  6. Arima Y, Hayashi H, Kamata K, Goto TM, Sasaki M, Kuramochi A, et al. Decreased expression of neurofibromin contributes to epithelial-mesenchymal transition in neurofibromatosis type 1. Exp Dermatol. 2010;19:e136–e141141.

    PubMed  Google Scholar 

  7. Atay O, Skotheim JM. Spatial and temporal signal processing and decision making by MAPK pathways. J Cell Biol. 2017;216:317–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baek ST, Tallquist MD. Nf1 limits epicardial derivative expansion by regulating epithelial to mesenchymal transition and proliferation. Development. 2012;139:2040–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bahm I, Barriga EH, Frolov A, Theveneau E, Frankel P, Mayor R. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration. Development. 2017;144:2456–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer. 2015;1:53–655.

    PubMed  PubMed Central  Google Scholar 

  11. Bilder D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 2004;18:1909–25.

    CAS  PubMed  Google Scholar 

  12. Bonelli MA, Cavazzoni A, Saccani F, Alfieri RR, Quaini F, La Monica S, et al. Inhibition of PI3K pathway reduces invasiveness and epithelial-to-mesenchymal transition in squamous lung cancer cell lines harboring PIK3CA gene alterations. Mol Cancer Ther. 2015;14:1916–27.

    CAS  PubMed  Google Scholar 

  13. Borovski T, Vellinga TT, Laoukili J, Santo EE, Fatrai S, van Schelven S, et al. Inhibition of RAF1 kinase activity restores apicobasal polarity and impairs tumour growth in human colorectal cancer. Gut. 2017;66:1106–15.

    CAS  PubMed  Google Scholar 

  14. Boudeau J, Sapkota G, Alessi D. LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett. 2003;546:159–65.

    CAS  PubMed  Google Scholar 

  15. Boyer A, Hermo L, Paquet M, Robaire B, Boerboom D. Seminiferous tubule degeneration and infertility in mice with sustained activation of WNT/CTNNB1 signaling in sertoli cells. Biol Reprod. 2008;79:475–85.

    CAS  PubMed  Google Scholar 

  16. Brumby AM, Richardson HE. Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 2003;22:5769–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120:3446–56.

    CAS  PubMed  Google Scholar 

  18. Cai Y, Zhang M, Qiu X, Wang B, Fu Y, Zeng J, et al. Upregulation of FBXW7 suppresses renal cancer metastasis and epithelial mesenchymal transition. Dis Markers. 2017;2017:8276939.

    PubMed  PubMed Central  Google Scholar 

  19. Calzada MJ, Esteban MA, Feijoo-Cuaresma M, Castellanos MC, Naranjo-Suárez S, Temes E, et al. von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Cancer Res. 2006;66:1553–600.

    CAS  PubMed  Google Scholar 

  20. Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG. Cyclins and cell cycle control in cancer and disease. Genes Cancer. 2012;3:649–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Caussinus E, Hirth F. Asymmetric stem cell division in development and cancer. Prog Mol Subcell Biol. 2007;45:205–25.

    CAS  PubMed  Google Scholar 

  22. Chaudhury A, Howe PH. The tale of transforming growth factor-beta (TGFbeta) signaling: a soigné enigma. IUBMB Life. 2009;61(10):929–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chavali M, Klingener M, Kokkosis AG, Garkun Y, Felong S, Maffei A, et al. Non-canonical Wnt signaling regulates neural stem cell quiescence during homeostasis and after demyelination. Nat Commun. 2018;9:36.

    PubMed  PubMed Central  Google Scholar 

  24. Chilov D, Sinjushina N, Rita H, Taketo MM, Mäkelä TP, Partanen J. Phosphorylated β-catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and neurogenesis in developing midbrain. J Dev Biol. 2011;357:259–68.

    CAS  Google Scholar 

  25. Cho SJ, Yoon C, Lee JH, Chang KK, Lin JX, Kim YH, et al. KMT2C mutations in diffuse-type gastric adenocarcinoma promote epithelial-to-mesenchymal transition. Clin Cancer Res. 2018;24:6556–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi HJ, Park JH, Park M, Won HY, Joo HS, Lee CH, et al. UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1. EMBO Rep. 2015;16:1288–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! Cell Physiol. 2010;222:42–9.

    CAS  Google Scholar 

  28. Chung CY, Potikyan G, Firtel RA. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol Cell. 2001;7:937–47.

    CAS  PubMed  Google Scholar 

  29. Cicalese A, Bonizzi G, Pasi C, Faretta M, Ronzoni S, Giulini B, et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell. 2009;138:1083–95.

    CAS  PubMed  Google Scholar 

  30. Cicchini C, de Nonno V, Battistelli C, Cozzolino AM, De Santis PM, Ciafrè SA, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen-Dvashi H, Ben-Chetrit N, Russell R, Carvalho S, Lauriola M, Nisani S, et al. Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol Med. 2015;7:299–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Collin L, Schlessinger K, Hall A. APC nuclear membrane association and microtubule polarity. Biol Cell. 2008;100:243–52.

    CAS  PubMed  Google Scholar 

  33. Coradini D, Fornili M, Ambrogi F, Boracchi P, Biganzoli E. TP53 mutation, epithelial-mesenchymal transition, and stemlike features in breast cancer subtypes. J Biomed Biotechnol. 2012;2012:254085.

    PubMed  PubMed Central  Google Scholar 

  34. Cowan CR, Hyman AA. Cyclin E-Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos. Nat Cell Biol. 2006;8:1441–7.

    CAS  PubMed  Google Scholar 

  35. Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res. 2008;68:4258–68.

    CAS  PubMed  Google Scholar 

  36. Daulat AM, Borg JP. When mTORC2-AKT signaling meets cell polarity. Cell Cycle. 2016;15:3003–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Desgrange A, Heliot C, Skovorodkin I, Akram SU, Heikkilä J, Ronkainen VP, et al. HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development. 2017;144:4704–19.

    CAS  PubMed  Google Scholar 

  38. Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24:2909–15.

    CAS  PubMed  Google Scholar 

  39. Devarajan E, Song YH, Krishnappa S, Alt E. Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int J Cancer. 2012;131:1023–31.

    CAS  PubMed  Google Scholar 

  40. Dong L, Pietsch S, Englert C. Towards an understanding of kidney diseases associated with WT1 mutations. Kidney Int. 2015;88:684–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dorighi KM, Swigut T, Henriques T, Bhanu NV, Scruggs BS, Nady N, et al. Mll3 and Mll4 facilitate enhancer RNA synthesis and transcription from promoters independently of H3K4 monomethylation. J Mol Cell. 2017;66:568–76.

    CAS  Google Scholar 

  42. Drubin DG, Nelson WJ. Origins of cell polarity. Cell. 1996;84:335–44.

    CAS  PubMed  Google Scholar 

  43. Duchi S, Fagnocchi L, Cavaliere V, Hsouna A, Gargiulo G, Hsu T. Drosophila VHL tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability. Development. 2010;137:1493–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol. 2013;5:a008904.

    PubMed  PubMed Central  Google Scholar 

  45. Eder AM, Sui X, Rosen DG, Nolden LK, Cheng KW, Lahad JP, et al. Atypical PKCι contributes to poor prognosis through loss of apical-basal polarity and Cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102:12519–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ekpe-Adewuyi E, Lopez-Campistrous A, Tang X, Brindley DN, McMullen TP. Platelet derived growth factor receptor alpha mediates nodal metastases in papillary thyroid cancer by driving the epithelial-mesenchymal transition. Oncotarget. 2016;7:83684–700.

    PubMed  PubMed Central  Google Scholar 

  47. El-Hashash AH, Warburton D. Cell polarity and spindle orientation in the distal epithelium of embryonic lung. Dev Dyn. 2011;240:441–5.

    PubMed  PubMed Central  Google Scholar 

  48. Etienne-Manneville S, Hall A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature. 2003;421:753–6.

    CAS  PubMed  Google Scholar 

  49. Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A. Cdc42 and Par6–PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol. 2005;170:895–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fábián Á, Vereb G, Szöllősi J. The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. Cytometry A. 2013;83:62–71.

    PubMed  Google Scholar 

  51. Fatehullah A, Appleton PL, Näthke IS. Cell and tissue polarity in the intestinal tract during tumourigenesis: cells still know the right way up, but tissue organization is lost. Philos Trans R Soc Lond B Biol Sci. 2013;368:20130014.

    PubMed  PubMed Central  Google Scholar 

  52. Feng W, Wu H, Chan LN, Zhang M. Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem. 2008;283:23440–9.

    CAS  PubMed  Google Scholar 

  53. Gao F, Zhang J, Wang X, Yang J, Chen D, Huff V, et al. WT1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum Mol Genet. 2014;23:333–41.

    CAS  PubMed  Google Scholar 

  54. Gasch C, Ffrench B, O'Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer. 2017;16:43.

    PubMed  PubMed Central  Google Scholar 

  55. Gómez-López S, Lerner R, Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci. 2014;71:575–97.

    PubMed  Google Scholar 

  56. Gong F, Guo Y, Niu Y, Jin J, Zhang X, Shi X, et al. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Oncotarget. 2017;8:315–28.

    PubMed  Google Scholar 

  57. Grände M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M. Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci. 2002;115:4227–366.

    PubMed  Google Scholar 

  58. Grassian AR, Lin F, Barrett R, Liu Y, Jiang W, Korpal M, et al. Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition. J Biol Chem. 2012;287:42180–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grifoni D, Garoia F, Bellosta P, Parisi F, De Biase D, Collina G, et al. aPKCζ cortical loading is associated with Lgl cytoplasmic release and tumor growth in Drosophila and human epithelia. Oncogene. 2007;26:5960–5.

    CAS  PubMed  Google Scholar 

  60. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003;63:2172–8.

    CAS  PubMed  Google Scholar 

  61. He H, Dai J, Xu Z, He W, Wang X, Zhu Y, et al. Fbxw7 regulates renal cell carcinoma migration and invasion via suppression of the epithelial-mesenchymal transition. Oncol Lett. 2018;15:3694–702.

    PubMed  PubMed Central  Google Scholar 

  62. He Z, Kannan N, Nemirovsky O, Chen H, Connell M, Taylor B, et al. BRCA1 controls the cell division axis and governs ploidy and phenotype in human mammary cells. Oncotarget. 2017;8:32461–75.

    PubMed  PubMed Central  Google Scholar 

  63. Hernandez P, Tirnauer JS. Tumor suppressor interactions with microtubules: keeping cell polarity and cell division on track. Dis Model Mech. 2010;3:304–15.

    CAS  PubMed  Google Scholar 

  64. Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest. 2008;118:2722–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang L, Muthuswamy SK. Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev. 2010;20:41–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Humar B, Guilford P. Hereditary diffuse gastric cancer: a manifestation of lost cell polarity. Cancer Sci. 2009;100:1151–7.

    CAS  PubMed  Google Scholar 

  67. Iijima M, Devreotes P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell. 2002;109:599–610.

    CAS  PubMed  Google Scholar 

  68. Itoh N, Nakayama M, Nishimura T, Fujisue S, Nishioka T, Watanabe T, et al. Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3-kinase) as Par3 partners by proteomic analysis. Cytoskeleton (Hoboken). 2010;67:297–308.

    CAS  Google Scholar 

  69. Ivaniutsin U, Chen Y, Mason JO, Price DJ, Pratt T. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex. Neural Dev. 2009;4:3.

    PubMed  PubMed Central  Google Scholar 

  70. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 2006;116:1561–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jędroszka D, Orzechowska M, Hamouz R, Górniak K, Bednarek AK. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer. PLoS ONE. 2017;12:e0188842.

    PubMed  PubMed Central  Google Scholar 

  72. Ji X, Jin S, Qu X, Li K, Wang H, He H, et al. Lysine-specific demethylase 5C promotes hepatocellular carcinoma cell invasion through inhibition BMP7 expression. BMC Cancer. 2015;15:801.

    PubMed  PubMed Central  Google Scholar 

  73. Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell. 2005;120:123–35.

    CAS  PubMed  Google Scholar 

  74. Jiang YG, Luo Y, He DL, Li X, Zhang LL, Peng T, et al. Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Int J Urol. 2007;14(11):1034–9.

    CAS  PubMed  Google Scholar 

  75. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim S, Ishidate T, Sharma R, Soto MC, Conte D Jr, Mello CC, et al. Wnt and CDK-1 regulate cortical release of WRM-1/β-catenin to control cell division orientation in early Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A. 2013;110:E918–E927927.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kleyman M, Kabeche L, Compton DA. STAG2 promotes error correction in mitosis by regulating kinetochore–microtubule attachments. J Cell Sci. 2014;127:4225–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 2004;18:559–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Knauf JA, Sartor MA, Medvedovic M, Lundsmith E, Ryder M, Salzano M, et al. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene. 2011;30:3153–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Knoblich JA. Mechanisms of asymmetric stem cell division. Cell. 2008;132:583–97.

    CAS  PubMed  Google Scholar 

  81. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.

    PubMed  PubMed Central  Google Scholar 

  82. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS ONE. 2010;5:e12445.

    PubMed  PubMed Central  Google Scholar 

  83. Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009;27:1712–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lan M, Kojima T, Osanai M, Chiba H, Sawada N. Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis. 2004;25:2385–95.

    CAS  PubMed  Google Scholar 

  85. Langhammer TS, Roolf C, Krohn S, Kretzschmar C, Huebner R, Rolfs A, et al. PI3K/Akt signaling interacts with Wnt/β-Catenin signaling but does not induce an accumulation of β-Catenin in the nucleus of acute lymphoblastic leukemia cell lines. Blood. 2013;122:4886.

    Google Scholar 

  86. Langlois MJ, Bergeron S, Bernatchez G, Boudreau F, Saucier C, Perreault N, et al. The PTEN phosphatase controls intestinal epithelial cell polarity and barrier function: role in colorectal cancer progression. PLoS ONE. 2010;5:e15742.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Laprise P, Chailler P, Houde M, Beaulieu JF, Boucher MJ, Rivard N. Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J Biol Chem. 2002;277:8226–344.

    CAS  PubMed  Google Scholar 

  88. Lee M, Vasioukhin V. Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci. 2008;121:1141–50.

    CAS  PubMed  Google Scholar 

  89. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318:447–50.

    CAS  PubMed  Google Scholar 

  90. Lehmann K, Janda E, Pierreux CE, Rytömaa M, Schulze A, McMahon M, et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 2000;14:2610–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lesko AC, Goss KH, Yang FF, Schwertner A, Hulur I, Onel K, et al. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis. Biochim Biophys Acta. 2015;1853:711–23.

    CAS  PubMed  Google Scholar 

  93. Li X, Young NM, Tropp S, Hu D, Xu Y, Hallgrímsson B, et al. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis. Hum Mol Genet. 2013;22:5160–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Löf-Öhlin ZM, Nyeng P, Bechard ME, Hess K, Bankaitis E, Greiner TU, et al. EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat Cell Biol. 2017;19:1313–25.

    PubMed  Google Scholar 

  95. Lucs AV, Muller WJ, Muthuswamy SK. Shc is required for ErbB2-induced inhibition of apoptosis but is dispensable for cell proliferation and disruption of cell polarity. Oncogene. 2010;29:174–87.

    CAS  PubMed  Google Scholar 

  96. Madero-Pérez J, Fdez E, Fernández B, Lara Ordóñez AJ, Blanca Ramírez M, Gómez-Suaga P, et al. Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation. Mol Neurodegener. 2018;13:3.

    PubMed  PubMed Central  Google Scholar 

  97. Magudia K, Lahoz A, Hall A. K-Ras and B-Raf oncogenes inhibit colon epithelial polarity establishment through up-regulation of c-myc. Cell Biol. 2012;198:185–94.

    CAS  Google Scholar 

  98. Main H, Radenkovic J, Jin SB, Lendahl U, Andersson ER. Notch signaling maintains neural rosette polarity. PLoS ONE. 2013;8:e62959.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Malminen M, Peltonen S, Koivunen J, Peltonen J. Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis. BMC Dermatol. 2002;2:10.

    PubMed  PubMed Central  Google Scholar 

  100. Markus SM, Lee WL. Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation. Bioarchitecture. 2011;1:209–15.

    PubMed  PubMed Central  Google Scholar 

  101. Maslova K, Kyriakakis E, Pfaff D, Frachet A, Frismantiene A, Bubendorf L, et al. EGFR and IGF-1R in regulation of prostate cancer cell phenotype and polarity: opposing functions and modulation by T-cadherin. FASEB J. 2015;29:494–507.

    CAS  PubMed  Google Scholar 

  102. Maxwell CA, Benítez J, Gómez-Baldó L, Osorio A, Bonifaci N, Fernández-Ramires R, et al. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biol. 2011;9:e1001199.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mayor R, Theveneau E. The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J. 2014;457:19–26.

    CAS  PubMed  Google Scholar 

  104. McCaffrey LM, Macara IG. Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol. 2011;21:727–35.

    CAS  PubMed  Google Scholar 

  105. McCain J. The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. P T. 2013;38:96–108.

    PubMed  PubMed Central  Google Scholar 

  106. Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36:320–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Meng Y, Cai KQ, Moore R, Tao W, Tse JD, Smith ER, et al. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Dev Dyn. 2017;246:517–30.

    CAS  PubMed  Google Scholar 

  108. Meyer AE, Gatza CE, How T, Starr M, Nixon AB, Blobe GC. Role of TGF-β receptor III localization in polarity and breast cancer progression. Mol Biol Cell. 2014;25:2291–304.

    PubMed  PubMed Central  Google Scholar 

  109. Mirouse V, Swick LL, Kazgan N, St Johnston D, Brenman JE. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol. 2007;177:387–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mizumoto A, Yamamoto K, Nakayama Y, Takara K, Nakagawa T, Hirano T, et al. Induction of epithelial-mesenchymal transition via activation of epidermal growth factor receptor contributes to sunitinib resistance in human renal cell carcinoma cell lines. J Pharmacol Exp Ther. 2015;355:152–8.

    CAS  PubMed  Google Scholar 

  111. Montesano R, Carrozzino F, Soulié P. Low concentrations of transforming growth factor-beta-1 induce tubulogenesis in cultured mammary epithelial cells. BMC Dev Biol. 2007;7:7.

    PubMed  PubMed Central  Google Scholar 

  112. Moore JK, Cooper JA. Coordinating mitosis with cell polarity: Molecular motors at the cell cortex. Semin Cell Dev Biol. 2010;21:283–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873.

    PubMed  PubMed Central  Google Scholar 

  114. Mu Y, Zang G, Engström U, Busch C, Landström M. TGFβ-induced phosphorylation of Par6 promotes migration and invasion in prostate cancer cells. Br J Cancer. 2015;112:1223–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mukherjee S, Kong J, Brat DJ. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev. 2015;24:405–16.

    PubMed  Google Scholar 

  116. Murawala P, Tripathi MM, Vyas P, Salunke A, Joseph J. Nup358 interacts with APC and plays a role in cell polarization. J Cell Sci. 2009;122:3113–222.

    CAS  PubMed  Google Scholar 

  117. Muthuswamy SK. Regulation of epithelial cell polarity during carcinogenesis. Breast Cancer Res. 2005;7:S19.

    Google Scholar 

  118. Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol. 2001;3:785–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Naishiro Y, Yamada T, Takaoka AS, Hayashi R, Hasegawa F, Imai K, et al. Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of beta-catenin/T-cell factor 4-mediated gene transactivation. Cancer Res. 2001;61:2751–8.

    CAS  PubMed  Google Scholar 

  120. Nakano A, Takashima S. LKB1 and AMP-activated protein kinase: regulators of cell polarity. Genes Cells. 2012;17:737–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Narayan N, Massimi P, Banks L. CDK phosphorylation of the discs large tumour suppressor controls its localisation and stability. J Cell Sci. 2009;122:65–74.

    CAS  PubMed  Google Scholar 

  122. Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 2009;23:2675–99.

    PubMed  PubMed Central  Google Scholar 

  123. Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity-GEF who's minding the GAP? J Cell Sci. 2014;127:3205–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nguyen AH, Tremblay M, Haigh K, Koumakpayi IH, Paquet M, Pandolfi PP, et al. Gata3 antagonizes cancer progression in Pten-deficient prostates. Hum Mol Genet. 2013;22:2400–10.

    CAS  PubMed  Google Scholar 

  125. Oh SJ, Shin JH, Kim TH, Lee HS, Yoo JY, Ahn JY, et al. β-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. J Pathol. 2013;231:210–22.

    CAS  PubMed  Google Scholar 

  126. O'Kane D, Jackson MV, Kissenpfennig A, Spence S, Damkat-Thomas L, et al. SMAD inhibition attenuates epithelial to mesenchymal transition by primary keratinocytes in vitro. Exp Dermatol. 2014;23:497–503.

    CAS  PubMed  Google Scholar 

  127. Okuda H, Saitoh K, Hirai S, Iwai K, Takaki Y, Baba M, et al. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem. 2001;276:43611–7.

    CAS  PubMed  Google Scholar 

  128. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    PubMed  PubMed Central  Google Scholar 

  129. Onishi K, Higuchi M, Asakura T, Masuyama N, Gotoh Y. The PI3K-Akt pathway promotes microtubule stabilization in migrating fibroblasts. Genes Cells. 2007;12:535–46.

    CAS  PubMed  Google Scholar 

  130. Ordinario E, Han HJ, Furuta S, Heiser LM, Jakkula LR, Rodier F, et al. ATM suppresses SATB1-induced malignant progression in breast epithelial cells. PLoS ONE. 2012;7:e51786.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Orlando K, Guo W. Membrane organization and dynamics in cell polarity. Cold Spring Harb Perspect Biol. 2009;1:a001321.

    PubMed  PubMed Central  Google Scholar 

  132. Ortega-Cava CF, Raja SM, Laiq Z, Bailey TA, Luan H, Mohapatra B, et al. Continuous requirement of ErbB2 kinase activity for loss of cell polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic breast cancer. J Carcinog. 2011;10:29.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ozawa Y, Nakamura Y, Fujishima F, Felizola SJ, Takeda K, Okamoto H, et al. Decreased expression of ARID1A contributes to infiltrative growth of esophageal squamous cell carcinoma. Exp Med. 2015;235:185–91.

    CAS  Google Scholar 

  134. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.

    CAS  PubMed  Google Scholar 

  135. Pao GM, Zhu Q, Perez-Garcia CG, Chou SJ, Suh H, Gage FH, et al. Role of BRCA1 in brain development. Proc Natl Acad Sci U S A. 2014;111:E1240–E12481248.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Parisi T, Balsamo M, Gertler F, Lees JA. The Rb tumor suppressor regulates epithelial cell migration and polarity. Mol Carcinog. 2018;57:1640–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Park GB, Kim D. Insulin-like growth factor-1 activates different catalytic subunits p110 of PI3K in a cell-type-dependent manner to induce lipogenesis-dependent epithelial-mesenchymal transition through the regulation of ADAM10 and ADAM17. Mol Cell Biochem. 2018;439:199–21111.

    CAS  PubMed  Google Scholar 

  138. Payankaulam S, Yeung K, McNeill H, Henry RW, Arnosti DN. Regulation of cell polarity determinants by the retinoblastoma tumor suppressor protein. Sci Rep. 2016;6:22879.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Perez-Mockus G, Schweisguth F. Cell polarity and notch signaling: linked by the E3 ubiquitin ligase neuralized? Bioessays. 2017;39(11):1700128.

    Google Scholar 

  140. Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P. TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci. 1999;112:4557–688.

    CAS  PubMed  Google Scholar 

  141. Pistore C, Giannoni E, Colangelo T, Rizzo F, Magnani E, Muccillo L, et al. DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene. 2017;36:5551–66.

    CAS  PubMed  Google Scholar 

  142. Pohl M, Radacz Y, Pawlik N, Schoeneck A, Baldus SE, Munding J, et al. SMAD4 mediates mesenchymal-epithelial reversion in SW480 colon carcinoma cells. Anticancer Res. 2010;30:2603–13.

    CAS  PubMed  Google Scholar 

  143. Ramadoss S, Chen X, Wang CY. Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J Biol Chem. 2012;287:44508–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Rancati G, Li R. Polarized cell growth: double grip by CDK1. Curr Biol. 2007;17:R600–R603603.

    CAS  PubMed  Google Scholar 

  145. Regad T. Targeting RTK signaling pathways in cancer. Cancers (Basel). 2015;7:1758–84.

    CAS  PubMed Central  Google Scholar 

  146. Rich JN. Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore). 2016;95:S2–7.

    CAS  Google Scholar 

  147. Richardson RB. p53 mutations associated with aging-related rise in cancer incidence rates. Cell Cycle. 2013;12:2468–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Royer C, Lu X. Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ. 2011;18:1470–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Russell R, Perkhofer L, Liebau S, Lin Q, Lechel A, Feld FM, et al. Loss of ATM accelerates pancreatic cancer formation and epithelial–mesenchymal transition. Nat Commun. 2015;6:7677.

    CAS  PubMed  Google Scholar 

  150. Sasaki AT, Chun C, Takeda K, Firtel RA. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol. 2004;167:505–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Schermer B, Ghenoiu C, Bartram M, Müller RU, Kotsis F, Höhne M, et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol. 2006;175:547–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Schoenenberger CA, Zuk A, Kendall D, Matlin KS. Multilayering and loss of apical polarity in MDCK cells transformed with viral K-ras. J Cell Biol. 1991;112:873–89.

    CAS  PubMed  Google Scholar 

  153. Schramm K, Krause K, Bittroff-Leben A, Goldin-Lang P, Thiel E, Kreuser ED. Activated K-ras is involved in regulation of integrin expression in human colon carcinoma cells. Int J Cancer. 2000;87:155–64.

    CAS  PubMed  Google Scholar 

  154. Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 2017;284:3132–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Sell S. On the stem cell origin of cancer. Am J Pathol. 2010;176:2584–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5:a006098.

    PubMed  PubMed Central  Google Scholar 

  157. Shafer MER, Nguyen AHT, Tremblay M, Viala S, Béland M, Bertos NR, et al. Lineage specification from prostate progenitor cells requires gata3-dependent mitotic spindle orientation. Stem Cell Reports. 2017;8:1018–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Shen L, Chen L, Wang Y, Jiang X, Xia H, Zhuang Z. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J Neurooncol. 2015;121:101–8.

    CAS  PubMed  Google Scholar 

  159. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Siller KH, Doe CQ. Spindle orientation during asymmetric cell division. Nat Cell Biol. 2009;11:365–74.

    CAS  PubMed  Google Scholar 

  161. Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res. 2011;108:e15–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Song G, Zhang H, Chen C, Gong L, Chen B, Zhao S, et al. miR-551b regulates epithelial-mesenchymal transition and metastasis of gastric cancer by inhibiting ERBB4 expression. Oncotarget. 2017;8:45725–35.

    PubMed  PubMed Central  Google Scholar 

  163. Stehbens SJ, Ju RJ, Adams MN, Perry SR, Haass NK, Bryant DM, et al. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci. 2018;131:jcs213678.

    PubMed  Google Scholar 

  164. Strippoli R, Loureiro J, Moreno V, Benedicto I, Pérez Lozano ML, Barreiro O, et al. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med. 2015;7:102–23.

    CAS  PubMed  Google Scholar 

  165. Sun M, Guo X, Qian X, Wang H, Yang C, Brinkman KL, et al. Activation of the ATM-Snail pathway promotes breast cancer metastasis. J Mol Cell Biol. 2012;4:304–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35:600–4.

    CAS  PubMed  Google Scholar 

  167. Takao C, Morikawa A, Ohkubo H, Kito Y, Saigo C, Sakuratani T, et al. Downregulation of ARID1A, a component of the SWI/SNF chromatin remodeling complex, in breast cancer. J Cancer. 2017;8:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol. 2007;608:119–29.

    CAS  PubMed  Google Scholar 

  169. Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Molecular network pathway of ERBB in diffuse-type gastric cancer: mesenchymal stem cells and epithelial-mesenchymal transition. J Clin Epigenet. 2018;4:13.

    Google Scholar 

  170. Tang M, Miyamoto Y, Huang EJ. Multiple roles of beta-catenin in controlling the neurogenic niche for midbrain dopamine neurons. Development. 2009;136:2027–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, et al. Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res. 2005;65:4228–377.

    CAS  PubMed  Google Scholar 

  172. Tanwar PS, Kaneko-Tarui T, Zhang L, Teixeira JM. Altered LKB1/AMPK/TSC1/TSC2/mTOR signaling causes disruption of Sertoli cell polarity and spermatogenesis. Hum Mol Genet. 2012;21:4394–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Terashima M, Ishimura A, Wanna-Udom S, Suzuki T. Epigenetic regulation of epithelial-mesenchymal transition by KDM6A histone demethylase in lung cancer cells. Biochem Biophys Res Commun. 2017;490:1407–13.

    CAS  PubMed  Google Scholar 

  174. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005;16:1987–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO. Wnt/β-catenin signaling in normal and cancer stem cells. Cancers (Basel). 2011;3:2050–79.

    CAS  Google Scholar 

  176. Veikkolainen V, Naillat F, Railo A, Chi L, Manninen A, Hohenstein P, et al. ErbB4 modulates tubular cell polarity and lumen diameter during kidney development. J Am Soc Nephrol. 2012;23:112–22.

    CAS  PubMed  Google Scholar 

  177. Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, et al. A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci U S A. 2009;106:14028–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development. 2005;132:1675–86.

    Google Scholar 

  179. Voon DC, Wang H, Koo JK, Chai JH, Hor YT, Tan TZ, et al. EMT-induced stemness and tumorigenicity are fueled by the EGFR/Ras pathway. PLoS ONE. 2013;8:e70427.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Voorneveld PW, Kodach LL, Jacobs RJ, Liv N, Zonnevylle AC, Hoogenboom JP, et al. Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology. 2014;147:196–208.

    CAS  PubMed  Google Scholar 

  181. Waghmare I, Page-McCaw A. Wnt signaling in stem cell maintenance and differentiation in the Drosophila germarium. Genes (Basel). 2018;9(3):127.

    Google Scholar 

  182. Wang H, Meyer CA, Fei T, Wang G, Zhang F, Liu XS. A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer. BMC Genomics. 2013;14:680.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang H, Zhong J, Wu C, Liu Y, Zhang J, Zou X, et al. Stromal antigen 2 functions as a tumor suppressor in bladder cancer cells. Oncol Rep. 2017;38:917–25.

    CAS  PubMed  Google Scholar 

  184. Wang W, Friedland SC, Guo B, O'Dell MR, Alexander WB, Whitney-Miller CL, et al. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut. 2019;68(7):1245–58.

    CAS  PubMed  Google Scholar 

  185. Wang X, Dong B, Zhang K, Ji Z, Cheng C, Zhao H, et al. E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genet. 2018;14:e1007609.

    PubMed  PubMed Central  Google Scholar 

  186. Wang X, Nie J, Zhou Q, Liu W, Zhu F, Chen W, et al. Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-beta during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochim Biophys Acta. 2008;1782:51–9.

    CAS  PubMed  Google Scholar 

  187. Wang X, Wang S, Li X, Jin S, Xiong F, Wang X. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma. Onco Targets Ther. 2017;10:2781–9.

    PubMed  PubMed Central  Google Scholar 

  188. Wang XN, Li ZS, Ren Y, Jiang T, Wang YQ, Chen M, et al. The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans. PLoS Genet. 2013;9:e1003645.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Warner DR, Pisano MM, Roberts EA, Greene RM. Identification of three novel Smad binding proteins involved in cell polarity. FEBS Lett. 2003;539:167–73.

    CAS  PubMed  Google Scholar 

  190. Waters R. Maintaining genome integrity. EMBO Rep. 2006;7:377–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Whitaker AT, Berthet E, Cantu A, Laird DJ, Alliston T. Smad4 regulates growth plate matrix production and chondrocyte polarity. Biol Open. 2017;6:358–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Williams E, Villar-Prados A, Bowser J, Broaddus R, Gladden AB. Loss of polarity alters proliferation and differentiation in low-grade endometrial cancers by disrupting Notch signaling. PLoS ONE. 2017;12(12):e0189081.

    PubMed  PubMed Central  Google Scholar 

  193. Williams T, Brenman JE. LKB1 and AMPK in cell polarity and division. Trends Cell Biol. 2008;18:193–8.

    CAS  PubMed  Google Scholar 

  194. Witte D, Otterbein H, Förster M, Giehl K, Zeiser R, Lehnert H, et al. Negative regulation of TGF-β1-induced MKK6-p38 and MEK-ERK signalling and epithelial-mesenchymal transition by Rac1b. Sci Rep. 2017;7:17313.

    PubMed  PubMed Central  Google Scholar 

  195. Wodarz A, Näthke I. Cell polarity in development and cancer. Nat Cell Biol. 2007;9:1016–24.

    CAS  PubMed  Google Scholar 

  196. Wu N, Wei J, Wang Y, Yan J, Qin Y, Tong D, et al. Ribosomal L22-like1 (RPL22L1) promotes ovarian cancer metastasis by inducing epithelial-to-mesenchymal transition. PLoS ONE. 2015;10:e0143659.

    PubMed  PubMed Central  Google Scholar 

  197. Wu ZQ, Brabletz T, Fearon E, Willis AL, Hu CY, Li XY, et al. Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc Natl Acad Sci USA. 2012;109:11312–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Xian W, Pappas L, Pandya D, Selfors LM, Derksen PW, de Bruin M, et al. Fibroblast growth factor receptor 1-transformed mammary epithelial cells are dependent on RSK activity for growth and survival. Cancer Res. 2009;69:2244–51.

    CAS  PubMed  Google Scholar 

  199. Xian W, Schwertfeger KL, Rosen JM. Distinct roles of fibroblast growth factor receptor 1 and 2 in regulating cell survival and epithelial-mesenchymal transition. Mol Endocrinol. 2007;21:987–1000.

    CAS  PubMed  Google Scholar 

  200. Xiong Y, Wang J, Zhu H, Liu L, Jiang Y. Chronic oxymatrine treatment induces resistance and epithelial-mesenchymal transition through targeting the long non-coding RNA MALAT1 in colorectal cancer cells. Oncol Rep. 2018;39:967–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Xue G, Hemmings BA. PKB/Akt–dependent regulation of cell motility. J Natl Cancer Inst. 2013;105:393–404.

    CAS  PubMed  Google Scholar 

  202. Yamashita Y, Yuan H, Cheng J, Hunt AJ. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol. 2010;2:a001313.

    PubMed  PubMed Central  Google Scholar 

  203. Yan HB, Wang XF, Zhang Q, Tang ZQ, Jiang YH, Fan HZ, et al. Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis. 2014;35:867–76.

    CAS  PubMed  Google Scholar 

  204. Yan W, Cao QJ, Arenas RB, Bentley B, Shao R. GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem. 2010;285:14042–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Yan Z, Chen M, Perucho M, Friedman E. Oncogenic Ki-ras but not oncogenic Ha-ras blocks integrin beta1-chain maturation in colon epithelial cells. J Biol Chem. 1997;272:30928–36.

    CAS  PubMed  Google Scholar 

  206. Yang H, Lu X, Liu Z, Chen L, Xu Y, Wang Y, et al. FBXW7 suppresses epithelial-mesenchymal transition, stemness and metastatic potential of cholangiocarcinoma cells. Oncotarget. 2015;6:6310–25.

    PubMed  PubMed Central  Google Scholar 

  207. Yap YS, McPherson JR, Ong CK, Rozen SG, Teh BT, Lee AS, et al. The NF1 gene revisited: from bench to bedside. Oncotarget. 2014;5:5873–92.

    PubMed  PubMed Central  Google Scholar 

  208. Yeom E, Hong ST, Choi KW. Crumbs and XPD in mitosis. Oncoscience. 2015;2:821–2.

    PubMed  PubMed Central  Google Scholar 

  209. Yokota Y, Kim WY, Chen Y, Wang X, Stanco A, Komuro Y, et al. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron. 2009;61:42–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050–60.

    CAS  PubMed  Google Scholar 

  211. Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, et al. SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene. 2016;35:5641–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhang Y, Yan W, Chen X. Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem. 2011;286:16218–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang Y, Zhou R, Qu Y, Shu M, Guo S, Bai Z. Lipoamide inhibits NF1 deficiency-induced Epithelial-Mesenchymal transition in murine schwann cells. Arch Med Res. 2017;48:498–505.

    CAS  PubMed  Google Scholar 

  214. Zhang Z, Qu J, Zheng C, Zhang P, Zhou W, Cui W, et al. Nrf2 antioxidant pathway suppresses Numb-mediated epithelial-mesenchymal transition during pulmonary fibrosis. Cell Death Dis. 2018;9:83.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhou W, Mo X, Cui W, Zhang Z, Li D, Li L, et al. Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis. Sci Rep. 2016;6:38646.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Grifone.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Manoj Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grifone, T.J. Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. Nucleus 63, 91–106 (2020). https://doi.org/10.1007/s13237-020-00313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-020-00313-4

Keywords