Skip to main content
Log in

Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Polyploidy is an important event and major force in plant speciation. Amongst the polyploids, allopolyploids have attracted special attention to investigate genetic and epigenetic mechanisms. Also, they are the means for the development of new genotypes and genomic combinations to facilitate genetic enhancement and agricultural productivity. Whereas natural allopolyploids are genetically stable and well adapted, the newly synthesized ones are highly unstable. This instability is manifested into alterations at genomic and/or phenotypic level. Here we present the phenomenon of direct chromosome/chromatin elimination from pollen mother cells (PMCs) in wheat-rye hybrids as one aspect of instability leading to irregular meiosis and disturbances in meiotic process. One of the prominent irregularities noticed is peripherally separated uncondensed or pycnotic masses of chromatin in all meiotic stages. We have observed that this chromatin undergoes elimination by budding-like way, whereby a “mini-cell” is created. It was also found that nucleoli are the first to be eliminated along with a small mass of chromatin. By means of GISH we have shown that both rye and wheat chromatin might be eliminated. In the separated groups of chromosomes/chromatin neither DNaseI nor DNase II activity was detected. Immunolocalization of tubulin allowed for differentiation between chromatin elimination from microspores and elimination from earlier stages of meiosis. It was noticeable, that in microspores special cytoskeleton structure pushing micronuclei out from the cells was created. Elimination occurred before and after meiosis as well as in each stage of meiotic division, but its intensity varied, depending on the PMC. The basis of the elimination mechanism might be the same as in cytomixis, because both phenomena share common symptoms, although cytomixis per se was rare in the analyzed hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baptista-Giacomelli FR, Pagliarini MS, De Almeid JL. Elimination of micronuclei from microspores in Brazilian oat (Avena sativa L.) variety. Genet Mol Biol. 2000;23:681–4.

    Article  Google Scholar 

  2. Barclay IR. High-frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature. 1975;256:410–1.

    Article  Google Scholar 

  3. Bennett MD, Finch RA, Barclay IR. The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma. 1976;54:175–200.

    Article  Google Scholar 

  4. Bennett MD, Smith JS. Nuclear DNA amounts in angiosperms. Philos T Roy Soc B. 1976;274:227–74.

    Article  CAS  Google Scholar 

  5. Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M. Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS Genet. 2008;3(1):e1402. doi:10.1371/journal.pone.0001402.

    Google Scholar 

  6. Bhat TA, Parrveen S, Khan AH. MMS-induced cytomixis in pollen mother cells of broad bean (Vicia faba L.). Turk J Bot. 2006;30:273–9.

    Google Scholar 

  7. Bourc’his D, Bestor T. Meiotic catastrophe and retrotransposons reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431:96–9.

    Article  PubMed  Google Scholar 

  8. Boyko EV, Badaev NS, Maximov NG, Zelenin AV. Does DNA content change in the course of triticale breeding? Cereal Res Commun. 1984;12:99–100.

    Google Scholar 

  9. Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Benko-Iseppon AM, Guerra M. Molecular cytogenetic characterization of parental genomes in the partial amphiploid Triticum aestivum x Thinopyrum ponticum. Gen Mol Biol. 2005;28(2):308–13.

    CAS  Google Scholar 

  10. Chen FQ, Hayes PM. Wide hybridization of Hordeum vulgare x Zea mays. Genome. 1991;34:603–5.

    Google Scholar 

  11. Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58:377–406.

    Article  PubMed  CAS  Google Scholar 

  12. Chen ZJ, Comai L, Pikaard CS. Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc Natl Acad Sci USA. 1998;95:14891–6.

    Article  PubMed  CAS  Google Scholar 

  13. Chen ZJ, Ni Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays. 2006;28:240–52.

    Article  PubMed  Google Scholar 

  14. Chen ZJ, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Gene Dev. 1997;11:2124–36.

    Article  PubMed  CAS  Google Scholar 

  15. Chen ZJ, Pikaard CS. Transcriptional analysis of nucleolar dominance in polyploidy plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA. 1997;94:3443–7.

    Google Scholar 

  16. Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol. 2000;43:387–99.

    Article  PubMed  CAS  Google Scholar 

  17. Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell. 2000;12:1551–68.

    Article  PubMed  CAS  Google Scholar 

  18. De M, Sharma AK. Cytomixis in pollen mother cells of an apomictic ornamental Ervalamia divaricala (Linn.) Alston. Cytologia. 1983;48:201–7.

    Google Scholar 

  19. De Nettancourt D, Grant WF. La Cytogénétique de Lotus (Leguminosae) III. Un cas de cytomixie dans un hybride interspésifique. Cytologia. 1964;29:191–5.

    Google Scholar 

  20. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM. Rapid elimination of low-copy DNA sequences in polyploidy wheat: A possible mechanism for differentiation of homoeologous chromosome. Genetics. 1997;147:1381–7.

    PubMed  CAS  Google Scholar 

  21. Finch RA. Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma. 1983;88:386–93.

    Article  Google Scholar 

  22. Flavell RB. The structure and control of expression of ribosomal RNA genes. Plant Mol Cell Biol. 1986;3:252–74.

    Google Scholar 

  23. Furuka Y, Nishikawa K, Tanino T. Stability in DNA content of AB genome component of common wheat during the past seven thousand years. J Genet. 1974;49(4):179–87.

    Google Scholar 

  24. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brüß C, et al. Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell. 2005;17:2431–8.

    Article  PubMed  CAS  Google Scholar 

  25. Ghanima AM, Talaat AA. Cytomixis and its possible evolutionary role in Kuwait population of Diplotaxis harra (Boraginaceae). Bot J Linn Soc. 2003;143:169–75.

    Article  Google Scholar 

  26. Goday C, Ruiz MF. Differential acethylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J Cell Sci. 2002;115:4765–75.

    Article  PubMed  CAS  Google Scholar 

  27. Gottschalk W. Chromosome and nucleus migration during microsporogenesis of Pisum sativum. Nucleus. 1970;13:1–9.

    Google Scholar 

  28. Gupta SB. Duration of mitotic cycle and regulation of DNA replication in Nicotiana plumbaginifolia and a hybrid derivative of N. tabacum showing chromosome instability. Can J Genet Cytol. 1969;11:133–42.

    Google Scholar 

  29. Hammatt N, Blackall NW, Davey MR. Variation in the DNA content of Glycine species. J Exp Bot. 1991;42:659–65.

    Article  CAS  Google Scholar 

  30. Hegarty MJ, Jones JM, Wilson ID, Barker GL, Coghill JA, Sanchez-Baracaldo P, et al. Development of anonymous cDNA microarrays to study changes to the Sencio floral transcriptome during hybrid speciation. Mol Ecol. 2005;14:2493–510.

    Article  PubMed  CAS  Google Scholar 

  31. Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, et al. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell. 2004;16:571–81.

    Article  PubMed  CAS  Google Scholar 

  32. Kalinka A, Achrem M, Rogalska S. Application of BSP method in methylation pattern comparison of reverse transcriptase (rt) gene in wheat-rye hybrids and their parental species. In: Naganowska B, Kachlicki P, Krajewski P, editors. Genetyka i genomika w doskonaleniu roślin uprawnych. Institute of Plant Genetics Poznań; 2009. p. 53–61.

  33. Kasha KJ, Kao KN. High frequency haploid production in barley (Hordeum vulgare L). Nature. 1970;225:874–5.

    Article  PubMed  CAS  Google Scholar 

  34. Kloc M, Zagrodzinska B. Chromatin elimination—an oddity or a common mechanism in differentiation and development? Differentiation. 2001;68:84–91.

    Article  PubMed  CAS  Google Scholar 

  35. Komarova NY, Grabe T, Huigen DJ, Hemleben V, Volkov RA. Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Plant Mol Biol. 2004;56:439–63.

    Article  PubMed  CAS  Google Scholar 

  36. Laurie DA, Bennett MD. The timing of chromosome elimination in hexaploid wheat x maize crosses. Genome. 1988;32:953–61.

    Google Scholar 

  37. Laurie DA, Bennett MD. Wheat x maize hybridization. Can J Genet Cytol. 1986;28:313–6.

    Google Scholar 

  38. Linde-Laursen I, von Bothmer R. Orderly arrangement of the chromosomes within barley genomes of chromosome-eliminating Hordeum lechleri x barley hybrids. Genome. 1999;42:225–36.

    Article  Google Scholar 

  39. Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF. Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome. 2001;44:321–30.

    Article  PubMed  CAS  Google Scholar 

  40. Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops I Changes in low-copy noncoding DNA sequences. Genome. 1998;41:272–7.

    Article  CAS  Google Scholar 

  41. Liu JH, Xu XY, Deng XX. Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tiss Org. 2005;82:19–44.

    Article  CAS  Google Scholar 

  42. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol. 2006;140(1):336–48.

    Article  PubMed  CAS  Google Scholar 

  43. Ma XF, Gustafson JP. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res. 2005;109:236–49.

    Article  PubMed  CAS  Google Scholar 

  44. Ma XF, Gustafson P. Allopolyploidization-accomodated genomic sequence changes in triticale. Ann Bot. 2008;101:825–32.

    Article  PubMed  Google Scholar 

  45. Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 2002;129:733–46.

    Article  PubMed  CAS  Google Scholar 

  46. Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, et al. Genomic changes in synthetic Arabidopsis polyploids. Plant J. 2005;41:221–30.

    Article  PubMed  CAS  Google Scholar 

  47. Marfil CF, Masuelli RW, Davison J, Comai L. Genomic instability in Solanum tuberosum x Solanum kurtzianum interspecific hybrids. Genome. 2006;49:104–13.

    PubMed  CAS  Google Scholar 

  48. Masterson J. Stomatal size in fossil plants. Evidence for polyploidy in majority of angiosperms. Science. 1994;264:421–4.

    Article  PubMed  CAS  Google Scholar 

  49. Matzk F. Hybrids crosses between oat and Andropogene or Paniceae species. Crop Sci. 1996;36:17–21.

    Article  Google Scholar 

  50. Matzk F, Mahn A. Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed. 1994;113:125–9.

    Article  Google Scholar 

  51. Matzk F, Oertel C, Altenhofer P, Schubert I. Manipulation of reproductive systems in Poaceae to increase the efficiency in crop breeding and production. Trends Agron. 1997;1:19–34.

    Google Scholar 

  52. McClintock B. The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforsch Mik Ana. 1934;21:294–328.

    Article  Google Scholar 

  53. Michel B. Replication fork arrest and DNA recombination. Trends Biochem Sci. 2000;25:173–8.

    Article  PubMed  CAS  Google Scholar 

  54. Morikawa T, Leggett M. Cytological and morphological variations in wild populations of Avena canariensis from Canary Islands. Genes Genet Syst. 1996;71:15–21.

    Article  Google Scholar 

  55. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–6.

    Article  PubMed  CAS  Google Scholar 

  56. Narayan RKJ. The role of genomic constraints upon evolutionary changes in genome size and chromosome organization. Ann Bot. 1998;82:57–66.

    Article  Google Scholar 

  57. Natali L, Giordani T, Polizzi E, Pugliesi C, Fambrini M, Cavallini A. Genomic alterations in the interspecific hybryd Helianthus annuus x Helianthus tuberosus. Theor Appl Genet. 1998;97:1240–7.

    Article  CAS  Google Scholar 

  58. Navashin M. Chromosomal alterations caused by hybridization and their bearing upon certain genetic problems. Cytologia. 1934;6:169–203.

    Google Scholar 

  59. Ohri D, Fritsch RM, Hanelt P. Evolution of genome size in Allium (Alliaceae). Plant Syst Evol. 1998;210:57–86.

    Article  Google Scholar 

  60. Ozkan H, Levy AA, Feldman M. Allopolyploidy-induced rapid genome evolution in wheat (Aegilops-Triticum) group. Plant Cell. 2001;13:1735–47.

    Article  PubMed  CAS  Google Scholar 

  61. Ozkan H, Tuna M, Arumuganathan K. Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered. 2003;94(3):260–4.

    Article  PubMed  CAS  Google Scholar 

  62. Pickering RA. Partial control of chromosome elimination by temperature in immature embryos of Hordeum vulgare L. x H. bulbosum. Euphytica. 1985;14:869–74.

    Article  Google Scholar 

  63. Pikaard CS. Nucleolar dominance and silencing of transcription. Trends Plant Sci. 1999;4:478–83.

    Article  PubMed  Google Scholar 

  64. Price HJ, Chambers KL, Bachmann K, Riggs J. Inheritance of nuclear 2C DNA content variation in intraspecific and interspecific hybrids of Microseris (Asteraceae). Am J Bot. 1985;70:1133–8.

    Article  Google Scholar 

  65. Reeder RH. Mechanisms of nucleolar dominance in animals and plants. J Cell Biol. 1985;101:2013–6.

    Article  PubMed  CAS  Google Scholar 

  66. Riera-Lizarazu O, Rines HW, Phillips RL. Cytological and molecular characterization of oat x maize partial hybrids. Theor Appl Genet. 1996;93:123–35.

    Article  CAS  Google Scholar 

  67. Rines HW, Dahleen LS. Haploids of plants produced by application of maize pollen to emasculated oat florets. Crop Sci. 1990;30:1073–8.

    Article  Google Scholar 

  68. Schranz ME, Osborn TC. Novel flowering time variation in the resynthesized polyploidy Brassica napus. J Hered. 2000;91:242–6.

    Article  PubMed  CAS  Google Scholar 

  69. Schwarzacher-Robinson T, Finch RA, Smith JB, Bennett MD. Genotypic control of centromere positions of parental genomes in Hordeum x Secale hybrid metaphases. J Cell Sci. 1987;87:291–304.

    Google Scholar 

  70. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001;13:1749–59.

    Article  PubMed  CAS  Google Scholar 

  71. Shimizu N, Itoh N, Utiyama H, Wahl GM. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol. 1998;140:1307–20.

    Article  PubMed  CAS  Google Scholar 

  72. Singhal VK, Gill B. Cytomixis in some woody species. Biologica. 1985;1:168–75.

    Google Scholar 

  73. Singhal VK, Gill B, Dhaliwal RS. Status of chromosomal diversity in the hardwood tree species of Punjab state. J Cytol Genet. 2007;8:67–83.

    Google Scholar 

  74. Singhal VK, Kumar P. Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J Biosci. 2008;33(3):371–80.

    Article  PubMed  CAS  Google Scholar 

  75. Soltis DE, Soltis PS. Polyploidy: origins of species and genome evolution. Trends Ecol Evol. 1999;9:348–52.

    Article  Google Scholar 

  76. Subrahmanyam NC. Haploidy from Hordeum interspecific crosses I Polyhaploids of H. parodii and H. procerum. Theor Appl Genet. 1977;49:209–17.

    Article  Google Scholar 

  77. Tanaka T, Shimizu N. Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation by lamin reorganization at S phase. J Cell Sci. 2000;113:697–707.

    PubMed  CAS  Google Scholar 

  78. Taverna SD, Coyne RS, Allis CD. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell. 2002;110:701–11.

    Article  PubMed  CAS  Google Scholar 

  79. Verma SC, Rees H. Nuclear DNA and evolution of allotetraploid Brassicaceae. Heredity. 1974;33:61–8.

    Article  Google Scholar 

  80. Wallace H, Landgridge WHR. Differential amphiplasty and the control of ribosomal RNA synthesis. Heredity. 1971;27:1–13.

    Article  CAS  Google Scholar 

  81. Wang J, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, et al. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics. 2004;167:1961–73.

    Article  PubMed  CAS  Google Scholar 

  82. Wendel JF. Genome evolution in polyploids. Plant Mol Biol. 2000;42:225–49.

    Article  PubMed  CAS  Google Scholar 

  83. Wheatley WG, Kasha KJ. Chromosome elimination in bi-nucleate cells of a (2X) H. vulgare X (2X0 H. bulbosum hybrid Barley. Genet Newsl. 1982;12:74–7.

    Google Scholar 

  84. Wolfe KH. Yesterday’s polyploids and the mystery of polyploidization. Nat Rev Genet. 2001;2:333–41.

    Article  PubMed  CAS  Google Scholar 

  85. Zenkteler M, Nitzsche W. Wide hybridization experiments in cereals. Theor Appl Genet. 1984;68:311–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisława Maria Rogalska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinka, A., Achrem, M. & Rogalska, S.M. Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids. Nucleus 53, 69–83 (2010). https://doi.org/10.1007/s13237-010-0002-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-010-0002-0

Keywords

Navigation