Skip to main content
Log in

Photocatalytic degradation of crystal violet and benzimidazole using Ag-CoFe2O4 and its composite with graphitic carbon nitride

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The classical co-precipitation technique was carried out for the preparation of cobalt ferrite (CFN), and Ag-doped cobalt ferrite (AgCFN). Composite with graphitic carbon nitride (AgCFN@gCN) was prepared by employing the ultrasonication method. Photocatalytic degradation activity of synthesized materials was evaluated using crystal violet (coloured compound) and benzimidazole (colourless compound) under sunlight. Various physiochemical methods such as UV–Visible, XRD, SEM, and FT-IR spectroscopy were employed for the characterization of prepared samples. XRD was used for structural characterization. The prepared nanomaterials were sized up to be < 09 nm. FT-IR spectroscopy was exploited for the functional group characterization. Surface morphology was perceived through Scanning Electron Microscope. Optical analysis was carried out using a UV–Visible spectrophotometer. The photodegradation efficiencies for crystal violet and benzimidazole were ascertained to be in the order of CFN < AgCFN < AgCFN@gCN, under sunlight. Among the synthesized photocatalysts, AgCFN@gCN was discovered to have the highest photocatalytic degradation efficiency of 52.72% and 84.21% for benzimidazole and crystal violet, respectively. The higher catalytic activity of AgCFN@gCN can be associated with its high surface area and the presence of active sites of the gCN sheets. Role of electrons (e), holes (h+), and hydroxyl radicals \({(OH}^{*})\) in the photocatalytic activity was also assessed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Hettige, M. Mani, D. Wheeler, Industrial pollution in economic development: the environmental Kuznets curve revisited. J. Dev. Econ. 62, 445–476 (2000)

    Article  Google Scholar 

  2. F. Orts, A. Del Río, J. Molina, J. Bonastre, F. Cases, Electrochemical treatment of real textile wastewater: trichromy procion HEXL®. J. Electroanal. Chem. 808, 387–394 (2018)

    Article  CAS  Google Scholar 

  3. K. Ranganathan, S. Jeyapaul, D. Sharma, Assessment of water pollution in different bleaching based paper manufacturing and textile dyeing industries in India. Environ. Monit. Assess. 134, 363–372 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. S.H.U. Din, M.H. Arshed, S. Ullah, P.O. Agboola, I. Shakir, A. Irshad, M. Shahid, Ag-doped nickel ferrites and their composite with rGO: Synthesis, characterization, and solar light induced degradation of coloured and colourless effluents. Ceram Int. 48(11), 15629–15639 (2022)

    Article  CAS  Google Scholar 

  5. A. Irshad, M. Shahid, S.M. El-Bahy, I.H. El Azab, G.A.M. Mersal, M.M. Ibrahim, P.O. Agboola, I. Shakir, Nickel doped CoAl2O4@CNT nanocomposite: synthesis, characterization, and evaluation of sunlight driven catalytic studies. Physica B 636, 413873 (2022)

    Article  CAS  Google Scholar 

  6. D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological methods for textile dye removal from wastewater: a review. Crit. Rev. Environ. Sci. Technol. 47, 1836–1876 (2017)

    Article  CAS  Google Scholar 

  7. J.A. Miller, E.C. Miller, The Carcinogenic Aminoazo Dyes**The work of the authors in this field has been supported by grants from the National Cancer Institute, Public Health Service, the American Cancer Society, the Jane Coffin Childs Memorial Fund for Medical Research, and the Alexander and Margaret Stewart Trust Fund, in Advances in Cancer Research. ed. by J.P. Greenstein, A. Haddow (Academic Press, New York, 1953), pp.339–396

    Chapter  Google Scholar 

  8. B. Manu, S. Chaudhari, Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Biores. Technol. 82, 225–231 (2002)

    Article  CAS  Google Scholar 

  9. S.A. Nabi, M. Shahadat, R. Bushra, A.H. Shalla, F. Ahmed, Development of composite ion-exchange adsorbent for pollutants removal from environmental wastes. Chem Eng J. 165, 405 (2010)

    Article  CAS  Google Scholar 

  10. Z. Song, C.J. Williams, R.G.J. Edyvean, Treatment of tannery wastewater by chemical coagulation. Desalination 164, 249–259 (2004)

    Article  CAS  Google Scholar 

  11. I.-S. Chang, S.-N. Kim, Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance. Process Biochem. 40, 1307–1314 (2005)

    Article  CAS  Google Scholar 

  12. P. Saranraj, Biological degradation of reactive dyes by using bacteria isolated from dye effluent contaminated soil. Middle East J Sci Res 17, 1695–1700 (2013)

    Google Scholar 

  13. G. Sudarjanto, B. Keller-Lehmann, J. Keller, Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology. J. Hazard. Mater. 138, 160–168 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. L. Gomathi Devi, S. Girish Kumar, K. Mohan Reddy, C. Munikrishnappa, Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J Hazard Mater. 164, 459–467 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. C. Pétrier, A. Francony, Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrason. Sonochem. 4, 295–300 (1997)

    Article  PubMed  Google Scholar 

  16. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  PubMed  Google Scholar 

  17. H. Lee, Y.-K. Park, S.-J. Kim, B.-H. Kim, S.-C. Jung, Titanium dioxide modification with cobalt oxide nanoparticles for photocatalysis. J. Ind. Eng. Chem. 32, 259–263 (2015)

    Article  CAS  Google Scholar 

  18. S. Munir, M. Farooq Warsi, S. Zulfiqar, I. Ayman, S. Haider, I.A. Alsafari, P.O. Agboola, I. Shakir, Nickel ferrite/zinc oxide nanocomposite: Investigating the photocatalytic and antibacterial properties. J Saudi Chem Soc 25, 101388 (2021)

    Article  CAS  Google Scholar 

  19. M. Shahid, L. Jingling, Z. Ali, I. Shakir, M.F. Warsi, R. Parveen, M. Nadeem, Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation. Mater. Chem. Phys. 139, 566–571 (2013)

    Article  CAS  Google Scholar 

  20. A. Irshad, M.F. Warsi, P.O. Agboola, G. Dastgeer, M. Shahid, Sol-gel assisted Ag doped NiAl2O4 nanomaterials and their nanocomposites with g-C3N4 nanosheets for the removal of organic effluents. J. Alloy. Compd. 902, 163805 (2022)

    Article  CAS  Google Scholar 

  21. I.M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides, P. Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J. Catal. 220, 127–135 (2003)

    Article  CAS  Google Scholar 

  22. C.W. Lai, J.C. Juan, W.B. Ko, S. BeeAbdHamid, An overview: recent development of titanium oxide nanotubes as photocatalyst for dye degradation. Int J Photoenergy 2014, 524135 (2014)

    Article  Google Scholar 

  23. A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J Phys Chem C 115, 22110–22120 (2011)

    Article  CAS  Google Scholar 

  24. J. Tian, Y. Leng, H. Cui, H. Liu, Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazard. Mater. 299, 165–173 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. K.B. Tan, M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, B. Salamatinia, Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep. Purif. Technol. 150, 229–242 (2015)

    Article  CAS  Google Scholar 

  26. D. Alhashmialameer, S. Ullah, A. Irshad, I.A. Alsafari, H.H. Abd El-Gawad, M.A.A. Elsheikh, X. Liu, S. Bashir, Copper-doped magnesium ferrite and its composite with rGO: Synthesis, characterization, and degradation of organic effluents and antibacterial study. Ceram Int. 48, 24100–24113 (2022)

    Article  CAS  Google Scholar 

  27. A. Irshad, F. Farooq, M. Farooq Warsi, N. Shaheen, A.Y. Elnaggar, E.E. Hussein, Z.M. El-Bahy, M. Shahid, Ag-doped FeCo2O4 nanoparticles and their composite with flat 2D reduced graphene oxide sheets for photocatalytic degradation of colored and colorless compounds. FlatChem. 31, 100325 (2022)

    Article  CAS  Google Scholar 

  28. A. Rehman, A. Daud, M.F. Warsi, I. Shakir, P.O. Agboola, M.I. Sarwar, S. Zulfiqar, Nanostructured maghemite and magnetite and their nanocomposites with graphene oxide for photocatalytic degradation of methylene blue. Mater. Chem. Phys. 256, 123752 (2020)

    Article  CAS  Google Scholar 

  29. S. Yousaf, S. Zulfiqar, M.I. Din, P.O. Agboola, M.F. Aly Aboud, M.F. Warsi, I. Shakir, Solar light irradiated photocatalytic activity of ZnO–NiO/rGO nanocatalyst. J Mater Res Technol 12, 999–1009 (2021)

    Article  CAS  Google Scholar 

  30. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo dyes. Nanoscale Res. Lett. 12, 143 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  31. M. Rahmat, A. Rehman, S. Rahmat, H.N. Bhatti, M. Iqbal, W.S. Khan, S.Z. Bajwa, R. Rahmat, A. Nazir, Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Market. Res. 8, 5149–5159 (2019)

    CAS  Google Scholar 

  32. C.N.C. Hitam, A.A. Jalil, A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J. Environ. Manage. 258, 110050 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. T. Tahir, K. Chaudhary, M.F. Warsi, M.S. Saif, I.A. Alsafari, I. Shakir, P.O. Agboola, S. Haider, S. Zulfiqar, Synthesis of sponge like Gd3+ doped vanadium oxide/2D MXene composites for improved degradation of industrial effluents and pathogens. Ceram. Int. 48, 1969–1980 (2022)

    Article  CAS  Google Scholar 

  34. B. Toksha, S.E. Shirsath, S. Patange, K. Jadhav, Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun. 147, 479–483 (2008)

    Article  CAS  Google Scholar 

  35. V. Pillai, D. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  CAS  Google Scholar 

  36. L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Adsorption capability for Congo red on nanocrystalline MFe2O4 (M= Mn, Fe Co, Ni) spinel ferrites. Chem. Eng. J. 181, 72–79 (2012)

    Article  Google Scholar 

  37. J. Venturini, T.B. Wermuth, M.C. Machado, S. Arcaro, A.K. Alves, A. da Cas Viegas, C.P. Bergmann, The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): a route to tuning its magnetic and mechanical properties. J Eur Ceram Soc. 39, 3442–3449 (2019)

    Article  CAS  Google Scholar 

  38. Y. He, Y. Wang, X. Yang, S. Xie, R. Yuan, Y. Chai, Metal organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal pro-brain natriuretic peptide. ACS Appl. Mater. Interfaces. 8, 7683–7690 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. R.A. Bohara, N.D. Throat, N.A. Mulla, S.H. Pawar, Surface-modified cobalt ferrite nanoparticles for rapid capture, detection, and removal of pathogens: a potential material for water purification. Appl. Biochem. Biotechnol. 182, 598–608 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, S. Khizroev, Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat. Commun. 4, 1–8 (2013)

    Google Scholar 

  41. B. Cai, M. Zhao, Y. Ma, Z. Ye, J. Huang, Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release. ACS Appl. Mater. Interfac. 7, 1327–1333 (2015)

    Article  CAS  Google Scholar 

  42. J.I. Kim, C. Chun, B. Kim, J.M. Hong, J.-K. Cho, S.H. Lee, S.-C. Song, Thermosensitive/magnetic poly (organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials 33, 218–224 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. A. Salunkhe, V. Khot, M.R. Phadatare, S. Pawar, Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio. J. Alloy. Compd. 514, 91–96 (2012)

    Article  CAS  Google Scholar 

  44. H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, H. Hu, S. Yang, Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 7, 3496–3504 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. P.P. Goswami, H.A. Choudhury, S. Chakma, V.S. Moholkar, Sonochemical synthesis of cobalt ferrite nanoparticles. Int J Chem Eng. 2013, 1–6 (2013)

    Article  Google Scholar 

  46. P. Hankare, K. Sanadi, K. Garadkar, D. Patil, I. Mulla, Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method. J. Alloy. Compd. 553, 383–388 (2013)

    Article  CAS  Google Scholar 

  47. J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfac. 6, 16449–16465 (2014)

    Article  CAS  Google Scholar 

  48. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interfac Sci. 343, 463–473 (2010)

    Article  CAS  Google Scholar 

  49. C. Franchi, B. Di Vico, A. Teggi, Long-term evaluation of patients with hydatidosis treated with benzimidazole carbamates. Clin. Infect. Dis. 29, 304–309 (1999)

    Article  CAS  PubMed  Google Scholar 

  50. N. Shaheen, M.A. Yousuf, I. Shakir, S. Zulfiqar, P.O. Agboola, M.F. Warsi, Wet chemical route synthesis of spinel oxide nano-catalysts for photocatalytic applications. Physica B 580, 411820 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by King Khalid University through a grant (KKU/RCAMS/22) under the Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Saudi Arabia. Authors are also thankful to the Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Pakistan

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Farooq Warsi or Imran Shakir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, A., Arshed, M.H., Somaily, H.H. et al. Photocatalytic degradation of crystal violet and benzimidazole using Ag-CoFe2O4 and its composite with graphitic carbon nitride. Macromol. Res. 31, 91–104 (2023). https://doi.org/10.1007/s13233-023-00111-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00111-2

Keywords

Navigation