Skip to main content
Log in

Cross-Linked Poly(cyclotriphosphazene-co-phloretin) Microspheres and Their Application for Controlled Drug Delivery

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this work, cross-linked poly(cyclotriphosphazene-co-phloretin) (PCTPPT) microspheres were synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope (SEM). In FT-IR spectra, the new appeared bands at 1009 cm−1 and 1132 cm−1 confirmed the successful polymerization between hexachlorocyclotriphosphazene (HCCP) and phloretin (Pht). While the SEM results showed that the size of the microspheres was strongly dependent on the HCCP:Pht mole ratio. The crystalline nature of the PCTPPT microspheres was checked by X-ray diffraction (XRD) and provided evidence for the successful preparation of the microspheres. The thermal stability of the PCTPPT microspheres was investigated by thermogravimetric analysis (TGA). The obtained TGA results showed that the increase in thermal stability was attributed to the highly cross-linked covalently bonded structure of PCTPPT microspheres. The particle size distribution was determined by dynamic light scattering (DLS) and the results showed that the decreased HCCP:Pht mole ratio increases the size of the microspheres. The PCTPPT-3 microspheres were used as drug carriers for a model drug camptothecin (CPT). The experimental findings showed a cumulative release of 41.0% in pH 4.0 and 32.6% in pH 7.4 after 350 h and the PCTPPT-3/CPT microspheres have good drug loading capability and controlled release property for CPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Dipti, D. Shweta, A. Shelly, C. Krishna, and K. M. Anil, Cancer Nanotechnol., 5, 1 (2014).

    Article  Google Scholar 

  2. X. Chen, X. Ding, Z. Zheng, and Y. Peng, New J. Chem., 30, 577 (2006).

    Article  CAS  Google Scholar 

  3. E. Maaskant, H. Gojzewski, M. A. Hempenius, G. J. Vancso, and N. E. Benes, Polym. Chem., 9, 3169 (2018).

    Article  CAS  Google Scholar 

  4. Z. Li, G. Wang, W. Ren, A. Zhang, L. An, and Y. Tian, J. Mater. Sci., 51, 4096 (2016).

    Article  CAS  Google Scholar 

  5. M. Napoli, C. Daniel, I. Immediata, P. Longo, and G. Guerra, Macromolecules, 42, 5566 (2009).

    Article  CAS  Google Scholar 

  6. J. Gu, C. F. Zhang, Y. X. Bai, L. Zhang, Y. P. Sun, and H. L. Chen, J. Appl. Polym. Sci., 123, 1968 (2012).

    Article  CAS  Google Scholar 

  7. D. Mondal, M. Griffith, and S. S. Venkatraman, Int. J. Polym. Mater. Polym. Biomater., 65, 255 (2016).

    Article  CAS  Google Scholar 

  8. E. Markovic, S. Clarke, J. Matisons, and G. P. Simon, Macromolecules, 41, 1685 (2008).

    Article  CAS  Google Scholar 

  9. D. K. Thukral, S. Dumoga, S. Arora, K. Chuttani, and A. K. Mishra, Cancer Nanotechnol., 5, 3 (2014).

    Article  Google Scholar 

  10. D. A. Khanin, Y. N. Kononevich, M. N. Temnikov, V. P. Morgalyuk, V. G. Vasil’ev, A. Y. Popov, V. K. Brel, V. S. Papkov, and A. M. Muzafarov, Polymer, 186, 122011 (2020).

    Article  CAS  Google Scholar 

  11. S. Rothemund and I. Teasdale, I. Chem. Soc. Rev., 45, 5200 (2016).

    Article  CAS  Google Scholar 

  12. D. H. Kim, P. Karan, P. Göring, J. Leclaire, A.-M. Caminade, J.-P. Majoral, U. Gösele, M. Steinhart, and W. Knoll, Small, 1, 99 (2005).

    Article  CAS  Google Scholar 

  13. H. R. Allcock, E. C. Kellam, and M. A. Hofmann, Macromolecules, 34, 5140 (2001).

    Article  CAS  Google Scholar 

  14. R. Khan, L. Wang, H. Yu, Z. Abdin, M. Akram, J. Wu, M. Haroon, R. S. Ullah, Q. Chen, and Z. Deng, Russ. Chem. Rev., 87, 109 (2018).

    Article  CAS  Google Scholar 

  15. L. Sun, T. Liu, H. Li, L. Yang, L. Meng, Q. Lu, and J. Long, ACS Appl. Mater. Interfaces, 7, 4990 (2015).

    Article  CAS  Google Scholar 

  16. S. Hou, S. Chen, Y. Dong, S. Gao, B. Zhu, and Q. Lu, ACS Appl. Mater. Interfaces, 10, 25983 (2018).

    Article  CAS  Google Scholar 

  17. S. M. Örüm and Y. S. Demircioğlu, Macromol. Res., 26, 671 (2018).

    Article  Google Scholar 

  18. S. Metinoğlu Örüm and Y. Süzen Demircioğlu, J. Macromol. Sci. Part A, 56, 854 (2019).

    Article  Google Scholar 

  19. S. M. Örüm, Polym. Bull., 79, 2851 (2022).

    Article  Google Scholar 

  20. S. U. Dar, S. Ali, M. U. Hameed, Z. Zuhra, and Z. Wu, New J. Chem., 40, 8418 (2016).

    Article  CAS  Google Scholar 

  21. Z. Huang, F. Zheng, S. Chen, X. Lu, C. G. Catharina Elizabeth van Sittert, and Q. Lu, RSC Adv., 6, 75552 (2016).

    Article  CAS  Google Scholar 

  22. M. J. N. Junk, U. Jonas, and D. Hinderberger, Small, 4, 1485 (2008).

    Article  CAS  Google Scholar 

  23. M. M. Constantin, C. G. Corbu, C. Tanase, E. Codrici, S. Mihai, I. D. Popescu, A. M. Enciu, S. Mocanu, I. Matei, and G. Ionita, Anal. Methods, 11, 965 (2019).

    Article  CAS  Google Scholar 

  24. H. Ozay and O. Ozay, Colloids Surf. A-Physicochem. Eng. Asp., 450, 99 (2014).

    Article  CAS  Google Scholar 

  25. P. Karuppuswamy, J. Reddy Venugopal, B. Navaneethan, A. Luwang Laiva, and S. Ramakrishna, Mater. Lett., 141, 180 (2015).

    Article  CAS  Google Scholar 

  26. S. Eun Shim, S. Yang, and S. Choe, J. Polym. Sci. Part A. Polym. Chem., 42, 3967 (2004).

    Article  Google Scholar 

  27. Y. Wang, J. Mu, L. Li, L. Shi, W. Zhang, and Z. Jiang, High Perform. Polym., 24, 229 (2012).

    Article  CAS  Google Scholar 

  28. X. Wei, G. Zhang, L. Zhou, and J. Li, Appl. Surf. Sci., 419, 744 (2017).

    Article  CAS  Google Scholar 

  29. Y. Wei, J. Zhang, A. H. Memon, and H. Liang, J. Mol. Liq., 236, 68 (2017).

    Article  CAS  Google Scholar 

  30. W. Wei, X. Huang, K. Chen, Y. Tao, and X. Tang, RSC Adv., 2, 3765 (2012).

    Article  CAS  Google Scholar 

  31. M. A. Uddin, H. Yu, L. Wang, B. U. Amin, S. Mehmood, R. Liang, F. Haq, J. Hu, and J. Xu, ACS Appl. Mater. Interfaces, 31, 61693 (2021).

    Article  Google Scholar 

  32. M. A. Uddin, H. Yu, L. Wang, K.-U.-R. Naveed, F. Haq, B. U. Amin, S. Mehmood, A Nazir, Y. Xing, and D. Shen, J. Polym. Sci., 58, 1924 (2020).

    Article  CAS  Google Scholar 

  33. M. A. Uddin, H. Yu, L. Wang, K.-u.-R. Naveed, B. U. Amin, S. Mehmood, F. Haq, A. Nazir, T. Lin, X. Chen, and Z. Ni, J. Colloid Interface Sci., 585, 237 (2021).

    Article  CAS  Google Scholar 

  34. M. A. Uddin, H. Yu, L. Wang, J. Liu, S. Mehmood, B. U. Amin, F. Haq, R. Liang, D. Shen, and Z. Ni, Colloids Surf. A-Physicochem. Eng. Asp., 625, 126807 (2021).

    Article  CAS  Google Scholar 

  35. M. A. Uddin, H. Yu, L. Wang, Y. Sheng, S. Mehmood, B. U. Amin, and R. Liang, Mater. Today Commun., 30, 103107 (2021).

    Article  Google Scholar 

  36. L. Meng, C. Xu, T. Liu, H. Li, Q. Lu, and J. Long, Polym. Chem., 6, 3155 (2015).

    Article  CAS  Google Scholar 

  37. X. Hu, Z. Zhou, L. Han, S. Li, and W. Zhou, New J. Chem., 44, 5218 (2020).

    Article  CAS  Google Scholar 

  38. J. Fu, M. Wang, C. Zhang, Q. Xu, X. Huang, and X. Tang, J. Mater. Sci., 47, 1985 (2012).

    Article  CAS  Google Scholar 

  39. L. L. Lock, M. LaComb, K. Schwarz, A. G. Cheetham, Y. Lin, P. Zhang, and H. Cui, Faraday Discuss., 166, 285 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Yu.

Additional information

Conflicts of interest

The authors declare that they have no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: Financial support from the Natural Science Foundation of Zhejiang Province (LHDMZ22H300003) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, S., Yu, H., Wang, L. et al. Cross-Linked Poly(cyclotriphosphazene-co-phloretin) Microspheres and Their Application for Controlled Drug Delivery. Macromol. Res. 30, 623–630 (2022). https://doi.org/10.1007/s13233-022-0066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0066-0

Keywords

Navigation