Skip to main content
Log in

Self-Healable Dielectric Polydimethylsiloxane Composite Based on Zinc-Imidazole Coordination Bond

  • Feature Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Self-healing material has been intensively studied in the last decade due to its capability of improving materials’ lifetime and safety. Among the numerous proposed self-healing mechanisms, reversible metal-ligand coordination bond is considered as a strong candidate for a healing moiety because of its high tunability of mechanical properties based on the thermodynamic characteristics and kinetic parameters of metal ions or ligands. Furthermore, the dipolar nature of coordination bond can enhance the dielectric property of the material. Herein, zinc-imidazole coordination bond, having a fast ligand exchange rate in ambient condition, was employed as a healing moiety to synthesize room temperature self-healable polydimethylsiloxane (PDMS). Imidazole modified PDMS cross-linked by ligand and zinc ratio 4.5 (IMZ-PDMS-1100 L/Z 4.5) exhibited ultimate tensile strength (UT) of 60.73 kPa with ultimate extensibility (UE) of 211%. These mechanical properties could be adjusted by varying L/Z ratio and IMZ content. In comparison with previously reported metal-ligand based self-healing PDMS, IMZ-PDMS-1100 L/Z 4.5 showed faster healing rate that recovered 98% of UT and UE after 31 h healing and even faster healing rate was achieved with higher IMZ content. Moreover, cross-linked IMZ-PDMS displayed high dielectric constant of 8.30±0.74 at 1 MHz, which was 2.7 times higher than conventional PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Garcia, Europ. Polym. J., 53, 118 (2014).

    Article  CAS  Google Scholar 

  2. S. R. White, N. Sottos, P. Geubelle, J. Moore, M. R. Kessler, S. Sriram, E. Brown, and S. Viswanathan, Nature, 409, 794 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. B. Blaiszik, M. Caruso, D. McIlroy, J. Moore, S. White, and N. Sottos, Polymer, 50, 990 (2009).

    Article  CAS  Google Scholar 

  4. K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, Nat. Mater., 6, 581 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. D. Y. Zhu, M. Z. Rong, and M. Q. Zhang, Prog. Polym. Sci., 49, 175 (2015).

    Article  CAS  Google Scholar 

  6. Y. Yang and M. W. Urban, Chem. Soc. Rev., 42, 7446 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. B. J. Adzima, C. J. Kloxin, and C. N. Bowman, Adv. Mater., 22, 2784 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Y. Amamoto, H. Otsuka, A. Takahara, and K. Matyjaszewski, Adv. Mater., 24, 3975 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, Science, 295, 1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. H.-Y. Lee and S.-H. Cha, Macromol. Res., 25, 640 (2017).

    Article  CAS  Google Scholar 

  11. Y. S. Ryu, K. W. Oh, and S. H. Kim, Macromol. Res., 24, 874 (2016).

    Article  CAS  Google Scholar 

  12. J. A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A. C. Balazs, T. Kowalewski, and K. Matyjaszewski, Macromolecules, 45, 142 (2011).

    Article  CAS  Google Scholar 

  13. N. Yoshie, M. Watanabe, H. Araki, and K. Ishida, Polym. Degrad. Stab., 95, 826 (2010).

    Article  CAS  Google Scholar 

  14. S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. Harris, W. Hayes, M. E. Mackay, and S. J. Rowan, Chem. Commun., 6717 (2009).

    Google Scholar 

  15. P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, and L. Leibler, Nature, 451, 977 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. N. Roy, E. Buhler, and J. M. Lehn, Polym. Int., 63, 1400 (2014).

    Article  CAS  Google Scholar 

  17. A. Zhang, L. Yang, Y. Lin, L. Yan, H. Lu, and L. Wang, J. Appl. Polym. Sci., 129, 2435 (2013).

    Article  CAS  Google Scholar 

  18. G. R. Whittell, M. D. Hager, U. S. Schubert, and I. Manners, Nat. Mater., 10, 176 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. W. C. Yount, D. M. Loveless, and S. L. Craig, J. Am. Chem. Soc., 127, 14488 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. D. Mozhdehi, S. Ayala, O. R. Cromwell, and Z. Guan, J. Am. Chem. Soc., 136, 16128 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. N. Abbas and H. T. Kim, Macromol. Res., 24, 1084 (2016).

    Article  CAS  Google Scholar 

  22. C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, and C. Linder, Nat. Chem., 8, 618 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, and C. Weder, Nature, 472, 334 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Y.-L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.-C. Chiu, V. Feig, J. Xu, T. Kurosawa, X. Gu, C. Wang, M. He, J. W. Chung, and Z. Bao, J. Am. Chem. Soc., 138, 6020 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. W. Maret and Y. Li, Chem. Rev., 109, 4682 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. A. Garcia-Bernabé, V. Compan, M.I. Burguete, E. García-Verdugo, N. Karbass, S. V. Luis, and E. Riande, J. Phys. Chem. C, 114, 7030 (2010).

    Article  CAS  Google Scholar 

  27. B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, and W. Wang, Nat. Commun., 6, 7303 (2015).

    Article  CAS  Google Scholar 

  28. L. Fetters, D. Lohse, D. Richter, T. Witten, and A. Zirkel, Macromolecules, 27, 4639 (1994).

    Article  CAS  Google Scholar 

  29. Y.-R. Luo and J. Kerr, CRC Hand. Chem. Phys., 89, 89 (2012).

    Google Scholar 

  30. L. Raghunanan and S. S. Narine, J. Phys. Chem. B, 117, 14754 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. I. Johnston, D. McCluskey, C. Tan, and M. Tracey, J. Micromech. Microeng., 24, 035017 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Hee Ahn.

Additional information

Acknowledgements: This research was supported by the Basic Science Research Program through a National Research Foundation of Korea grant funded by the Ministry of Education (NRF-2017R1A5A1070259) and the Global Research Lab (GRL) Program through the National Research Foundation of Korea grant funded by the Ministry of Science, ICT, and Future Planning (NRF-2015K1A1A2072365).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, I., Jeon, S.I., Chung, I.J. et al. Self-Healable Dielectric Polydimethylsiloxane Composite Based on Zinc-Imidazole Coordination Bond. Macromol. Res. 27, 435–443 (2019). https://doi.org/10.1007/s13233-019-7147-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7147-8

Keywords

Navigation