Skip to main content
Log in

Poly(vinylidene fluoride)/Plasma-Treated BaTiO3 Nanocomposites with Enhanced Electroactive Phase

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Functional C=O and C-O groups are successfully fixated onto the surface of a high dielectric constant material barium titanate (BaTiO3) via non-thermal plasma. The strong dipole interaction exists between these functional groups and CH2 or CF2 groups of poly(vinylidene fluoride) (PVDF), resulting in the enhancement of the electroactive γ-phase of PVDF/BaTiO3 nanocomposites on one hand; on the other hand the dispersion of BaTiO3 is enhanced in the PVDF matrix, where the smaller spherulite size and better hydrophilic property are observed in the PVDF/plasmatreated BaTiO3 nanocomposite, comparing with the untreated ones. Therefore, the PVDF/plasma-treated BaTiO3 nanoparticles exhibited higher dielectric constant and lower dielectric loss than the PVDF/BaTiO3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li, and G. H. Hu, Prog. Mater. Sci., 57, 660 (2012).

    Article  CAS  Google Scholar 

  2. L. Xie, X. Huang, K. Yang, S. Li, and P. Jiang, J. Mater. Chem. A, 2, 5244 (2014).

    Article  CAS  Google Scholar 

  3. S. Ramesh, B. A. Shutzberg, C. Huang, and J. Gao, IEEE Trans. Adv. Packag., 26, 17 (2003).

    Article  CAS  Google Scholar 

  4. T. Sharma, S. S. Je, B. Gill, and J. X. J. Zhang, Sens. Actuators A: Phys., 177, 87 (2012).

    Article  CAS  Google Scholar 

  5. X. Huang, L. Xie, P. Jiang, G. Wang, and F. Liu, J. Phys. D Appl. Phys., 42, 245407 (2009).

    Article  CAS  Google Scholar 

  6. M. Sharma, G. Madras, and S. Bose, Macromolecules, 47, 1392 (2017).

    Article  CAS  Google Scholar 

  7. S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, and Q. M. Zhang, Adv. Mater., 25, 1734 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. S. Cho, J. S. Lee, and J. Jang, ACS Appl. Mater. Interfaces, 7, 9668 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. B. S. Lee, B. Park, H. S. Yang, J. W. Han, C. Choong, J. Bae, K. Lee, W. R. Yu, U. Jeong, and U. I. Chung, ACS Appl. Mater. Interfaces, 6, 3520 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. H. Tang, Y. Lin, and H. A. Sodano, Adv. Energy Mater., 3, 451 (2013).

    Article  CAS  Google Scholar 

  11. M. F. Lin and P. S. Lee, J. Mater. Chem. A, 1, 14455 (2013).

    Article  CAS  Google Scholar 

  12. E. A. Stefanescu, X. Tan, Z. Lin, N. Bowler, and M. R. Kessler, Polymer, 52, 2016 (2011).

    Article  CAS  Google Scholar 

  13. K. Ke, P. Pötschke, D. Jehnichen, D. Fischer, and B. Voit, Polymer, 55, 611 (2014).

    Article  CAS  Google Scholar 

  14. S. Fabiano, X. Crispin, and M. Berggren, ACS Appl. Mater. Interfaces, 6, 438 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. V. Cauda, S. Stassi, K. Bejtka, G. Canavese, ACS Appl. Mater. Interfaces, 5, 6430 (2013).

    Article  CAS  Google Scholar 

  16. K. Yu, H. Wang, Y. Zhou, Y. Bai, and Y. Niu, J. Appl. Phys., 113, 2 (2013).

    Google Scholar 

  17. R. Krishnamoorti, MRS Bull., 32, 341 (2007).

    Article  CAS  Google Scholar 

  18. Y. Fan, G. Wang, X. Huang, J. Bu, X. Sun, and P. Jiang, Appl. Surface Sci., 364, 798 (2016).

    Article  CAS  Google Scholar 

  19. T. Zhou, J. W. Zha, R. Y. Cui, B. H. Fan, J. K. Yuan, and Z. M. Dang, ACS Appl. Mater. Interfaces, 3, 2184 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. L. Xie, X. Huang, Y. Huang, K. Yang, and P. Jiang, ACS Appl. Mater. Interfaces, 5, 1747 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. S. L. Jiang, Y. Yu, and Y. K. Zeng, Current Appl. Phys., 9, 956 (2009).

    Article  Google Scholar 

  22. Y. Zhao, X. L. Liu, X. L. Dou, and J. F. Chen, J. Adv. Phys., 4, 357 (2015).

    Article  Google Scholar 

  23. Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, and T. Tanaka, ACS Appl. Mater. Interfaces, 3, 4396 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Shen, Y. Guan, Y. Hu, Y. Lei, Y. Song, Y. Lin, and C. W. Nan, Appl. Phys. Lett., 103, 1939 (2013).

    Google Scholar 

  25. K. Yang, X. Huang, Y. Huang, L. Xie, and P. Jiang, Chem. Mater., 25, 2327 (2013).

    Article  CAS  Google Scholar 

  26. L. Xie, X. Huang, C. Wu, and P. Jiang, J. Mater. Chem., 21, 5897 (2011).

    Article  CAS  Google Scholar 

  27. N. D. Geyter, R. Morent, C. Leys, L. Gengembre, E. Payen, S. V. Vlierberghe, and E. Schacht, Surf. Coat. Technol., 202, 3000 (2008).

    Article  CAS  Google Scholar 

  28. C. Zhang, Y. Zhou, T. Shao, Q. Xie, J. Xu, and W. Yang, Appl. Surf. Sci., 311, 468 (2014).

    Article  CAS  Google Scholar 

  29. F. Zhi, L. Hao, Y. Hao, X. Xie, Y. Qiu, and K. Edmund, IEEE Trans. Plasma Sci., 255, 7279 (2009).

    Google Scholar 

  30. R. Morent, N. D. Geyter, and C. Leys, Nucl. Instrum. Methods Phys. Res. B, 266, 3081 (2008).

    Article  CAS  Google Scholar 

  31. Z. Fang, Y. Liu, K. Liu, T. Shao, and C. Zhang, Vacuum, 86, 1305 (2012).

    Article  CAS  Google Scholar 

  32. Z. Fang, S. Ji, J. Pan, T. Shao, and C. Zhang, IEEE Trans. Plasma Sci., 40, 883 (2012).

    Article  CAS  Google Scholar 

  33. A. K. Jin, G. S. Dong, T. J. Kang, and J. R. Youn, Carbon, 44, 1898 (2006).

    Article  CAS  Google Scholar 

  34. T. M. Long, S. Prakash, M. A. Shannon, and J. S. Moore, Langmuir, 22, 4104 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. T. Shao, C. Zhang, Y. Yu, Z. Fang, and P. Yan, Europhys. Lett., 97, 55005 (2012).

    Article  CAS  Google Scholar 

  36. H. Bubert, S. Haiber, W. Brandl, G. Marginean, M. Heintze, and V. Brüser, Diam. Relat. Mater., 12, 811 (2003).

    Article  CAS  Google Scholar 

  37. T. Shao, D. Zhang, Y. Yu, C. Zhang, J. Wang, P. Yan, and Y. Zhou, IEEE Trans. Plasma Sci., 38, 1651 (2010).

    Article  Google Scholar 

  38. M. Pérezmendoza, M. Domingogarcía, I. Fernándezmorales, and A. Martínezalonso, J. Phys. Chem. B, 110, 11327 (2006).

    Article  CAS  Google Scholar 

  39. Z. Fang, C. Ruan, T. Shao, C. Zhang, Plasma Sources Sci. Technol., 25, 01LT01 (2016).

    Article  CAS  Google Scholar 

  40. R. Wang, K. Zhang, Y. Shen, C. Zhang, W. Zhu, and T. Shao, Plasma Sources Sci. Technol., 25, 015020 (2016).

    Article  CAS  Google Scholar 

  41. Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, and C. W. Nan, J. Mater. Chem., 22, 8063 (2012).

    Article  CAS  Google Scholar 

  42. R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, and G. G. Andersson, J. Phys. Chem. C, 116, 6289 (2012).

    Article  CAS  Google Scholar 

  43. T. Shao, C. Zhang, K. H. Long, D. D. Zhang, J. Wang, P. Yan, Y. X. Zhou, Appl. Surf. Sci., 256, 3888 (2010).

    Article  CAS  Google Scholar 

  44. N. Grossiord, J. Loos, O. Regev, and C. E. Koning, Chem. Mater., 18, 1089 (2006).

    Article  CAS  Google Scholar 

  45. L. Gong, B. Yin, L. P. Li, and M. B. Yang, Compos. Part B: Eng., 73, 49 (2015).

    Article  CAS  Google Scholar 

  46. Y. Ahn, J. Y. Lim, S. M. Hong, J. Lee, J. Ha, H. J. Choi, and Y. Seo, J. Phys. Chem. C, 117, 11791 (2013).

    Article  CAS  Google Scholar 

  47. S. Manna, S. K. B. And, and A. K. Nandi, J. Phys. Chem. B, 110, 12318 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. D. Wang, Y. Bao, J. W. Zha, J. Zhao, Z. M. Dang, G. H. Hu, ACS Appl. Mater. Interfaces, 4, 6273 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. P. M. Balaji, V. Katari, A. Ehab, L. Gavin, G. Hemant, and A. K. T. Salunke, J. Phys. Chem. C, 118, 20819 (2014).

    Article  CAS  Google Scholar 

  50. X. J. Yang, J. Y. Li, and Y. P. Lei, Adv. Mater. Res., 668, 17 (2013).

    Article  CAS  Google Scholar 

  51. S. Theapsak, A. Watthanaphanit, and R. Rujiravanit, ACS Appl. Mater. Interfaces, 4, 2474 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. C. Labay, C. Canal, and M. J. García-Celma, Plasma Chem. Plasma Processing, 30, 885 (2010).

    Article  CAS  Google Scholar 

  53. A. K. Riau, D. Mondal, G. H. F. Yam, M. Setiawan, B. Liedberg, S. S. Venkatraman, and J. S. Mehta, ACS Appl. Mater. Interfaces, 7, 21690 (2010).

    Article  CAS  Google Scholar 

  54. T. Bhimasankaram, S. V. Suryanarayana, and G. Prasad, Curr. Sci., 74, 967 (1998).

    CAS  Google Scholar 

  55. F. Mendes, C. M. Costa, C. Caparros, V. Sencadas, and S. L-Mendez, J. Mater. Sci., 47, 1378 (2012).

    Article  CAS  Google Scholar 

  56. Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, and T. Tanaka, ACS Appl. Mater. Interfaces, 3, 4396 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Gong.

Additional information

Acknowledgments: The authors gratefully acknowledge the financial support from the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No. Sklpme2015-4-24) and the Provincial Department of Education Science General Foundation of Liaoning (Contract No. L2015017). Thanks to Prof. You-Fu Zhou and Prof. Ji-Quan Huang from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, for the dielectric property measurements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Gong, L., Li, Mm. et al. Poly(vinylidene fluoride)/Plasma-Treated BaTiO3 Nanocomposites with Enhanced Electroactive Phase. Macromol. Res. 26, 965–972 (2018). https://doi.org/10.1007/s13233-018-6118-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6118-9

Keywords

Navigation