Skip to main content
Log in

Ion Conduction, Dielectric and Mechanical Properties of Epoxy-Based Solid Polymer Electrolytes Containing Succinonitrile

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We use impedance spectroscopy to investigate ionic conduction and dielectric response and mechanical tests to study mechanical properties of cross-linked epoxy-based solid polymer electrolytes (SPEs) containing a mixture of succinonitrile (SN) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) with different ratio of mechanically robust epoxy and ionic conducting SN/LiTFSI mixture content. Increasing SN/LiTFSI mixture content results in a proportional increase in ionic conductivity σ DC , and its maximum conductivity approaches σ DC ∼10-4 S/cm at room temperature. This is consistent with accelerating the observed relaxation processes such as ion rearrangement and segmental motion, upon adding further SN/LiTFSI content. The combination of epoxy and SN/LiTFSI also leads to a large increase in static dielectric constant ε s ∼75, which is higher than the prediction from the Landau and Lifshitz mixing rule, compared to the host epoxy (ε s ∼4) and pure SN/LiTFSI mixture (ε s ∼53). On the other hand, the addition of SN/LiTFSI decreases Young’s modulus (E), compared to the neat epoxy, and approaches E∼10 MPa at room temperature, reflecting a trade-off relationship between E and σ DC .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, Nano Energy, 33, 363 (2017).

    Article  CAS  Google Scholar 

  2. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Chem. Rev., 111, 3577 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, Nat. Energy, 1, 16114 (2016).

    Article  CAS  Google Scholar 

  5. M. B. Armand, Annu. Rev. Mater. Sci., 16, 245 (1986).

    Article  CAS  Google Scholar 

  6. D. T. Hallinan and N. P. Balsara, Annu. Rev. Mater. Res., 43, 503 (2013).

    Article  CAS  Google Scholar 

  7. L. Long, S. Wang, M. Xiao, and Y. Meng, J. Mater. Chem. A, 4, 10038 (2016).

    Article  CAS  Google Scholar 

  8. T. F. Miller, Z. G. Wang, G. W. Coates, and N. P. Balsara, Acc. Chem. Res., 50, 590 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, and Q. Zhang, Adv. Sci., 3, 1500213 (2016).

    Article  CAS  Google Scholar 

  10. Z. Xue, D. He, and X. Xie, J. Mater. Chem. A, 3, 19218 (2015).

    Article  CAS  Google Scholar 

  11. D. E. Fenton, J. M. Parker, and P. V. Wright, Polymer, 14, 589 (1973).

    Article  CAS  Google Scholar 

  12. M. A. Ratner, P. Johansson, and D. F. Shriver, MRS Bull., 25, 31 (2000).

    Article  CAS  Google Scholar 

  13. U. H. Choi, S. Liang, M. V. O. O’Reilly, K. I. Winey, J. Runt, and R. H. Colby, Macromolecules, 47, 3145 (2014).

    Article  CAS  Google Scholar 

  14. U. H. Choi, S. Liang, Q. Chen, J. Runt, and R. H. Colby, ACS Appl. Mater. Interfaces, 8, 3215 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. U. H. Choi and R. H. Colby, Macromolecules, 50, 5582 (2017).

    Article  CAS  Google Scholar 

  16. B.-K. Cho, A. Jain, S. M. Gruner, and U. Wiesner, Science, 305, 1598 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. M. Chintapalli, X. C. Chen, J. L. Thelen, A. A. Teran, X. Wang, B. A. Garetz, and N. P. Balsara, Macromolecules, 47, 5424 (2014).

    Article  CAS  Google Scholar 

  18. M. Chintapalli, T. N. P. Le, N. R. Venkatesan, N. G. Mackay, A. A. Rojas, J. L. Thelen, X. C. Chen, D. Devaux, and N. P. Balsara, Macromolecules, 49, 1770 (2016).

    Article  CAS  Google Scholar 

  19. M. W. Schulze, L. D. McIntosh, M. A. Hillmyer, and T. P. Lodge, Nano Lett., 14, 122 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. L. D. McIntosh, M. W. Schulze, M. T. Irwin, M. A. Hillmyer, and T. P. Lodge, Macromolecules, 48, 1418 (2015).

    Article  CAS  Google Scholar 

  21. S. A. Chopade, J. G. Au, Z. Li, P. W. Schmidt, M. A. Hillmyer, and T. P. Lodge, ACS Appl. Mater. Interfaces, 9, 14561 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. R. Khurana, J. L. Schaefer, L. A. Archer, and G. W. Coates, J. Am. Chem. Soc., 136, 7395 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, and M. Armand, Nat. Mater., 3, 476 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. N. Shirshova, A. Bismarck, S. Carreyette, Q. P. V. Fontana, E. S. Greenhalgh, P. Jacobsson, P. Johansson, M. J. Marczewski, G. Kalinka, A. R. J. Kucernak, J. Scheers, M. S. P. Shaffer, J. H. G. Steinke, and M. Wienrich, J. Mater. Chem. A, 1, 15300 (2013).

    Article  CAS  Google Scholar 

  25. N. Shirshova, A. Bismarck, E. S. Greenhalgh, P. Johansson, G. Kalinka, M. J. Marczewski, M. S. P. Shaffer, and M. Wienrich, J. Phys. Chem. C, 118, 28377 (2014).

    Article  CAS  Google Scholar 

  26. M. Wübbenhorst and J. van Turnhout, J. Non-Cryst. Solids, 305, 40 (2002).

    Article  Google Scholar 

  27. D. Fragiadakis, S. C. Dou, R. H. Colby, and J. Runt, Macromolecules, 41, 5723 (2008).

    Article  CAS  Google Scholar 

  28. U. H. Choi, A. Mittal, T. L. Price, H. W. Gibson, J. Runt, and R. H. Colby, Macromolecules, 46, 1175 (2013).

    Article  CAS  Google Scholar 

  29. T. Furukawa, Y. Mukasa, T. Suzuki, and K. Kano, J. Polym. Sci., Part B: Polym. Phys., 40, 613 (2002).

    Article  CAS  Google Scholar 

  30. S. Zhang and J. Runt, J. Phys. Chem. B, 108, 6295 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, and M. Watanabe, J. Am. Chem. Soc., 133, 13121 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. D. Fragiadakis, S. Dou, R. H. Colby, and J. Runt, J. Chem. Phys., 130, 64907 (2009).

    Article  CAS  Google Scholar 

  33. T. Bauer, M. Köhler, P. Lunkenheimer, A. Loidl, and C. A. Angell, J. Chem. Phys., 133, 144509 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. F. Kremer and A. Schönhals, in Broadband Dielectric Spectroscopy, Springer-Verlag, New York, 2002.

    Google Scholar 

  35. A. Boersma, J. van Turnhout, and M. Wübbenhorst, Macromolecules, 31, 7453 (1998).

    Article  CAS  Google Scholar 

  36. L. D. Landau and E. M. Lifshitz, in Electrodynamics of Continuous Media, Pergamon Press, New York, 1963.

    Google Scholar 

  37. Y. Kim, S. J. Kwon, H.-K. Jang, B. M. Jung, S. B. Lee, and U. H. Choi, Chem. Mater., 29, 4401 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Mun Jung.

Additional information

Acknowledgment: This work was supported by a Research Grant of Pukyong National University (2016 year).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, U.H., Jung, B.M. Ion Conduction, Dielectric and Mechanical Properties of Epoxy-Based Solid Polymer Electrolytes Containing Succinonitrile. Macromol. Res. 26, 459–465 (2018). https://doi.org/10.1007/s13233-018-6061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6061-9

Keywords

Navigation