Skip to main content
Log in

Synthesis of dual stimuli-responsive polymers through atom transfer radical mechanism in aqueous media

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

New dual stimuli-responsive (thermo- & pH-) polymers were successfully synthesized through an atom transfer radical mechanism in aqueous media. N-Isopropylacrylamide (NiPAM) ([N]) as a precursor of temperatureresponsive moiety and sulfonamide-modified styrenic monomer and methacrylamide ([S]) were employed for the synthesis of the smart copolymers. The molar ratio of NiPAM to sulfonamide composed of the polymer backbone played an important role in the control of the phase transitional behavior of the formed block polymers. When the composition ratio of [S]/[N] decreases from 1/1 to 1/2, the dual stimuli-responsive phase behavior was clearly observed. Another important factor for the control of the phase morphology was to obtain the reactivity ratios, r 1 and r 2, of the two monomers. In this study, Cu(I)-catalyzed copolymerization of sulfadimethoxinyl methacrylamide (MASX; M1) and NiPAM (M2) as the precursors of smart materials yielded r 1 = 8.046 and r 2=1.572, leading to the production of a gradient type of copolymer in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. C. Kwon, Y. H. Bae, and S. W. Kim, Nature, 354, 291 (1991).

    Article  CAS  Google Scholar 

  2. A. Prokop, E. Kozlov, G. Carlesso, and J. M. Davidson, Adv. Polym. Sci., 160, 119 (2002).

    Article  CAS  Google Scholar 

  3. A. S. Hoffmann, in Controlled Drug Delivery: Challenges and Strategies, K. N. Park, Ed., Am. Chem. Soc., Washington, D. C., 1997, Chap. 24, pp 485–498.

  4. G. Chen and A. S. Hoffmann, Nature, 373, 49 (1995).

    Article  CAS  Google Scholar 

  5. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B.-H. Jo, Nature, 404, 588 (2000).

    Article  CAS  Google Scholar 

  6. Y. Hirokawa and T. Tanaka, J. Chem. Phys., 81, 6379 (1984).

    Article  Google Scholar 

  7. S. Hirotsu, Y. Hirokawa, and T. Tanaka, J. Chem. Phys., 87, 1392 (1987).

    Article  CAS  Google Scholar 

  8. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim, Macromolecules, 26, 2496 (1993).

    Article  CAS  Google Scholar 

  9. G. Wang and P. Wu, Langmuir, 32, 3728 (2016).

    Article  CAS  Google Scholar 

  10. G. Abel, T. A. Connors, W. C. J. Ross, N.-H. Nam, H. Hoellinger, and L. Pichat, Eur. J. Cancer, 9, 49 (1973).

    Article  CAS  Google Scholar 

  11. C. T. Supuran, A. Casini, and A. Scozzafava, Med. Res. Rev., 23, 535 (2003).

    Article  CAS  Google Scholar 

  12. C. A. Spinks, G. M. Wyatt, H. A. Lee, and M. R. A. Morgan, Bioconjug. Chem., 10, 583 (1999).

    Article  CAS  Google Scholar 

  13. S. Y. Park and Y. H. Bae, Macromol. Rapid Commun., 20, 269 (1999).

    Article  CAS  Google Scholar 

  14. K. M. Kim, S. Choi, H. J. Jeon, J. Y. Lee, D. Choo, J. Kim, Y. S. Kang, and H.-O. Yoo, Macromol. Res., 16, 169 (2008).

    Article  CAS  Google Scholar 

  15. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001).

    Article  CAS  Google Scholar 

  16. M. Kamigaito, T. Ando, and M. Sawamoto, Chem. Rev., 101, 3689 (2001).

    Article  CAS  Google Scholar 

  17. H. Cheng, S. Xie, Y. Zhou, W. Huang, D. Yan, J. Yang, and B. Ji, J. Phys. Chem. B, 114, 6291 (2010).

    Article  CAS  Google Scholar 

  18. F. A. Plamper, M. Ruppel, A. Schmalz, O. Borisov, M. Ballauff, and A. H. E. Muller, Macromolecules, 40, 8361 (2007).

    Article  CAS  Google Scholar 

  19. M. Nakayama, Y. Kawahara, J. Akimoto, H. Kanazawa, and T. Okano, Colloids Surf. B: Biointerf., 99, 12 (2012).

    Article  CAS  Google Scholar 

  20. H. Ringsdorf, J. Polym. Sci., Symp., 51, 135 (1975).

    Article  CAS  Google Scholar 

  21. M. Finemann and S. D. Ross, J. Polym. Sci., 5, 259 (1950).

    Article  Google Scholar 

  22. H. J. Harwood, Macromol. Symp., 10/11, 331 (1987).

    Article  Google Scholar 

  23. J. M. G. Cowie, in Comprehensive Polymer Science, E. S. Eastman, A. Ledwith, S. Russo, and P. Sigwalt, Eds., Pergamon, New York, 1989, Vol. 4, pp 331–354.

    Google Scholar 

  24. K. Matyjaszewski, M. Ziegler, S. V. Arehart, D. Greszta, and T. Pakula, J. Phys. Org. Chem., 13, 775 (2000).

    Article  CAS  Google Scholar 

  25. S. Qin, J. Saget, J. Pyun, S. Jia, T. Kowalewski, and K. Matyjaszewski, Macromolecules, 36, 8969 (2003).

    Article  CAS  Google Scholar 

  26. U. Beginn, Colloid Polym. Sci., 286, 1465 (2008).

    Article  CAS  Google Scholar 

  27. S. Liu and S. P. Armes, Angew. Chem. Int. Ed., 41, 1413 (2002).

    Article  CAS  Google Scholar 

  28. V. Butun, N. C. Billingham, and S. P. Armes, J. Am. Chem. Soc., 120, 11818 (1998).

    Article  Google Scholar 

  29. R. Savic, L. Luo, A. Eisenberg, and D. Maysinger, Science, 300, 615 (2003).

    Article  CAS  Google Scholar 

  30. G. Zhang, A. Niu, S. Peng, M. Jiang, Y. Tu, M. Li, and C. Wu, Acc. Chem. Res., 34, 249 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungahn Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, A.B., An, J.W., Kim, H.J. et al. Synthesis of dual stimuli-responsive polymers through atom transfer radical mechanism in aqueous media. Macromol. Res. 25, 70–78 (2017). https://doi.org/10.1007/s13233-017-5004-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5004-1

Keywords

Navigation