Skip to main content
Log in

Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Despite the high thermoelectric performance of traditional inorganic semiconductors-based thermoelectric materials, recent efforts have been made to utilize the unique advantages of organic thermoelectric materials. Carbon-based organic thermoelectric materials are considered as an economically viable option, offering the advantages of large area fabrication, flexible and lightweight modules, in addition to their low thermal conductivity required for superior thermoelectric performance. The limitation of low electrical conductivity of organic materials could be circumvented by forming a percolating network of single walled carbon nanotubes (SWNTs) in the form of buckypaper. In this study, buckypapers were prepared by vacuum filtration of acid-treated SWNTs, which provided a percolating network for efficient electron transport. Subsequently, p-type and n-type buckypapers were prepared by acid treatment or reduction by urea moelecules or encapsulating SWNTs with electron donating organic compounds like polyethylenimine. The thermoelectric properties of the buckypapers were analyzed as a function of temperature. The acid-treated SWNTs and urea-SWNTs generated positive thermopower of up to 60 µV/K at 380 K, and hence were used as p-type thermoelectric materials. On the other hand, the polyethylenimine-SWNT generated negative thermopower of −60 µV/K at 380 K, used as n-doped material. Subsequently, thermoelectric module was fabricated by alternatively stacking the p-type and n-type buckypapers. Each p-n couple generated a thermoelectric voltage of 0.7 mV per temperature gradient of 50 K. With an increase in the number of p-n layers to four, the thermoelectric voltage increased to 7 mV for a temperature gradient of 50 K. This module generated a power upto 960 nW upon varying load resistance due to their low electrical resistance formed by well percolated networks of SWNTs. The higher electrical conductivities of p-type and n-type SWNTs were achieved by incorporating organic materials such as reducing agent (urea) or electron donating functional groups (PEI) around the surface of SWNTs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. DiSalvo, Science, 285, 703 (1999).

    Article  CAS  Google Scholar 

  2. B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. A. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, and Z. F. Ren, Science, 320, 634 (2008).

    Article  CAS  Google Scholar 

  3. D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science, 287, 1024 (2000).

    Article  CAS  Google Scholar 

  4. Y. Zhai, T. Zhang, Y. Xiao, J. Jiang, S. Yang, and G. Xu, J. Alloys Compd., 563, 285 (2013).

    Article  CAS  Google Scholar 

  5. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem., 3, 160 (2011).

    Article  CAS  Google Scholar 

  6. Q. Zhang, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem., 48, 10910 (2009).

    Article  CAS  Google Scholar 

  7. O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater., 10, 429 (2011).

    Article  CAS  Google Scholar 

  8. K.-C. Chang, M.-S. Jeng, C.-C. Yang, Y.-W. Chou, S.-K. Wu, M. Thomas, and Y.-C. Peng, J. Electron. Mater., 38, 1182 (2009).

    Article  CAS  Google Scholar 

  9. O. Bubnova, M. Berggren, and X. Crispin, J. Am. Chem. Soc., 134, 16456 (2012).

    Article  CAS  Google Scholar 

  10. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  11. T. Park, C. Park, B. Kim, H. Shin, and E. Kim, Energy Environ. Sci., 6, 788 (2013).

    Article  CAS  Google Scholar 

  12. W. Zhao, S. Fan, N. Xiao, D. Liu, Y. Y. Tay, C. Yu, D. Sim, H. H. Hng, Q. Zhang, F. Boey, J. Ma, X. Zhao, H. Zhang, and Q. Yan, Energy Environ. Sci., 5, 5364 (2012).

    Article  CAS  Google Scholar 

  13. J. Wu, Y. Sun, W. Xu, and Q. Zhang, Synth. Met., 189, 177 (2014).

    Article  CAS  Google Scholar 

  14. W. Lee, Y. J. Cho, H. R. Choi, H. J. Park, T. Chang, M. Park, and H. Lee, J. Sep. Sci., 35, 3250 (2012).

    Article  CAS  Google Scholar 

  15. M. Piao, J. Na, J. Choi, J. Kim, G. P. Kennedy, G. Kim, S. Roth, and U. Dettlaff-Weglikowska, Carbon, 62, 430 (2013).

    Article  CAS  Google Scholar 

  16. J. Choi, N.K. Tu, S.-S. Lee, H. Lee, J. Kim, and H. Kim, Macromol. Res., 22, 1104 (2014).

    Article  CAS  Google Scholar 

  17. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 382, 54 (1996).

    Article  CAS  Google Scholar 

  18. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, J. Phys. Chem. Solids, 61, 1153 (2000).

    Article  CAS  Google Scholar 

  19. D. Kim, Y. Kim, K. Choi, J. C. Grunlan, and C. Yu, ACS Nano, 4, 513 (2009).

    Article  Google Scholar 

  20. C. Yu, K. Choi, L. Yin, and J. C. Grunlan, ACS Nano, 5, 7885 (2011).

    Article  CAS  Google Scholar 

  21. C. Yu, A. Murali, K. Choi, and Y. Ryu, Energy Environ. Sci., 5, 9481 (2012).

    Article  CAS  Google Scholar 

  22. H. S. Lee, C. H. Yun, S. K. Kim, J. H. Choi, C. J. Lee, H.-J. Jin, H. Lee, S. J. Park, and M. Park, Appl. Phys. Lett., 95, 134104 (2009).

    Article  Google Scholar 

  23. C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czerw, and D. L. Carroll, Nano Lett., 12, 1307 (2012).

    Article  CAS  Google Scholar 

  24. J. Zhao, H. Park, J. Han, and J. P. Lu, J. Phys. Chem. B, 108, 4227 (2004).

    Article  CAS  Google Scholar 

  25. C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B.-L. Gu, and W. Duan, J. Phys. Chem. B, 110, 10266 (2006).

    Article  CAS  Google Scholar 

  26. T. Park, K. Sim, J. Lee, and W. Yi, J. Nanosci. Nanotechnol., 12, 5812 (2012).

    Article  CAS  Google Scholar 

  27. B. H. Kim, T. H. Park, S. J. Baek, D. S. Lee, S. J. Park, J. S. Kim, and Y. W. Park, J. Appl. Phys., 103, 096103 (2008).

    Article  Google Scholar 

  28. Y. X. Zhou, A. Gaur, S. H. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers, Nano Lett., 4, 2031 (2004).

    Article  CAS  Google Scholar 

  29. Z. Lei, L. Lu, and X. S. Zhao, Energy Environ. Sci., 5, 6391 (2012).

    Article  CAS  Google Scholar 

  30. O. Boffoue, A. Jacquot, A. Dauscher, B. Lenoir, and M. Stolzer, Rev. Sci. Instrum., 76, 053907 (2005).

    Article  Google Scholar 

  31. S. Biamino and C. Badini, J. Eur. Ceram. Soc., 24, 3021 (2004).

    Article  CAS  Google Scholar 

  32. R. B. Koizhaiganova, D. H. Hwang, C. J. Lee, S. Roth, and U. Dettlaff-Weglikowska, Phys. Status Solidi B, 247, 2793 (2010).

    Article  CAS  Google Scholar 

  33. Y. Nonoguchi, K. Ohashi, R. Kanazawa, K. Ashiba, K. Hata, T. Nakagawa, C. Adachi, T. Tanase, and T. Kawai, Sci. Rep., 3, 3344 (2013).

    Article  Google Scholar 

  34. V. Skákalová, A. B. Kaiser, Y. S. Woo, and S. Roth, Phys. Rev. B, 74, 085403 (2006).

    Article  Google Scholar 

  35. N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan, Phys. Rev. B, 66, 235424 (2002).

    Article  Google Scholar 

  36. Z. Li, V. Saini, E. Dervishi, V. P. Kunets, J. Zhang, Y. Xu, A. R. Biris, G. J. Salamo, and A. S. Biris, Appl. Phys. Lett., 96, 033110 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bark, H., Lee, W. & Lee, H. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic molecules. Macromol. Res. 23, 795–801 (2015). https://doi.org/10.1007/s13233-015-3110-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3110-5

Keywords

Navigation