Skip to main content
Log in

Effect of incorporating bis(2-hydroxyethyl) terephthalate on thermal and mechanical properties and degradability of poly(butylene succinate)

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A series of novel random copolymers of poly(butylene succinate-co-ethylene terephthalate) were synthesized and characterized in terms of thermal and mechanical properties, crystallinity and biodegradability. The composition and microstructure of the prepared copolyesters were characterized by 1H NMR and 13C NMR, respectively. It was seen that the PBS sequence length decreases with ethylene terephthalate content. All copolymers are semi-crystalline and crystallinity and crystallite size decrease slightly with the comonomer content up to 10%, but the introduction of 20% comonomer leads to decrease the crystallinity up to 29%. The melting temperature of copolyesters decreases with the comonomer content according to the Baur’s equation that indicates only PBS blocks crystallize and crystallite size is decreased with the comonomer content. It was also investigated that the elastic modulus also decreases slightly with the comonomer content. However, the elongation at break increases by 500% due to the decrease in crystallite size and crystallinity. Incorporating non-biodegradable aromatic comonomer has a little effect on copolyester degradability because of the randomness and lower crystallite size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Vasilets, V. A Surguchenko, A. S Ponomareva, E. A Nemetz, V. I. Sevastianov, J. W Bae, and K. D Park, Macromol. Res., 23, 205 (2015).

    Article  CAS  Google Scholar 

  2. C. W. Lee, Y. Kimura, and J. D Chung, Macromol. Res., 16, 651 (2008).

    Article  CAS  Google Scholar 

  3. M. A Hillmyer and W. B Tolman, Acc. Chem. Res., 47, 2390 (2014).

    Article  CAS  Google Scholar 

  4. A. Díaz, L. Franco, F. Estrany, L. J del Valle, and J. Puiggalí, Polym. Degrad. Stab., 99, 80 (2014).

    Article  Google Scholar 

  5. Y. Zhao and Z. Qiu, Macromol. Res., 22, 693 (2014).

    Article  CAS  Google Scholar 

  6. D. G Papageorgiou, K. Chrissafis, E. Pavlidou, E. A Deliyanni, G. Z. Papageorgiou, Z. Terzopoulou, and D. N Bikiaris, Thermochim. Acta, 590, 181 (2014).

    Article  CAS  Google Scholar 

  7. B. Laycocka, P. Halleya, S. Pratt, A. Werkerc, and P. Lant, Prog. Polym. Sci., 38, 536 (2013).

    Article  Google Scholar 

  8. D. N Bikiaris and D. S Achilias, Polymer, 49, 3677 (2008).

    Article  CAS  Google Scholar 

  9. V. Tserki, P. Matzinos, E. Pavlidou and C. Panayiotou, Polym. Degrad. Stab., 91, 377 (2006).

    Article  CAS  Google Scholar 

  10. D. P. R. Kint, A. Alla, E. Deloret, J. L Campos, and S. Munoz-Guerra, Polymer, 44, 1321 (2003).

    Article  CAS  Google Scholar 

  11. M. Wojtczak, S. Dutkiewicz, A. Galeski, and E. Piorkowska, Eur. Polym. J., 55, 86 (2014).

    Article  CAS  Google Scholar 

  12. M. Kowalczyk, E. Piorkowska, S. Dutkiewicz, and P. Sowinski, Eur. Polym. J., 59, 59 (2014).

    Article  CAS  Google Scholar 

  13. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, Wiley, Chichester, 2004.

    Book  Google Scholar 

  14. Y. K Han, S. R Kim, and J. Kim, Macromol. Res., 10, 108 (2002).

    Article  CAS  Google Scholar 

  15. F. Q. Kondratowicz and R. Ukielski, Polym. Degrad. Stab., 94, 375 (2009).

    Article  CAS  Google Scholar 

  16. S. Velmathi, R. Nagahata, J. I. Sugiyama, and K. Takeuchi, Macromol. Rapid. Comm., 26, 1163 (2005).

    Article  CAS  Google Scholar 

  17. R. S. Loup, T. Jeanmaire, J. J. Robin, and B. Boutevin, Polymer, 44, 3437 (2003).

    Article  Google Scholar 

  18. C. H. Chen, H. Y. Lu, M. Chen, J. S. Peng, C. J. Tsai, and C. S. Yang, J. Appl. Polym. Sci., 111, 1433 (2009).

    Article  CAS  Google Scholar 

  19. Y. Zhang, Z. Feng, Q. Feng, and F. Cui, Eur. Polym. J., 40, 1297 (2004).

    Article  CAS  Google Scholar 

  20. E. Olewnik, W. Czerwinski, J. Nowaczyk, M. O. Sepulchre, M. Tessier, S. Salhi, and A. Fradet, Eur. Polym. J., 43, 1009 (2007).

    Article  CAS  Google Scholar 

  21. J. D. Menczel and R. B. Prime, in Thermal Analysis of Polymers: Fundamentals and Applications, Wiley, Hoboken, 2009, Chap. 2.

    Book  Google Scholar 

  22. Z. Gan, H. Abe, H. Kurokawa, and Y. Doi, Biomacromolecules, 2, 605 (2001).

    Article  CAS  Google Scholar 

  23. L. Mandelkern, in Crystallization of Polymers: Equilibrium Concepts, Cambridge University Press, Cambridge, 2002, Chap. 5.

    Book  Google Scholar 

  24. S. Y. Hwang, A. A. Khaydarov, J. Y. Park, E. Yoo, and S. S. Im, Macromol. Res., 19, 699 (2011).

    Article  CAS  Google Scholar 

  25. G. Z. Papageorgiou, D. G. Papageorgiou, K. Chrissafis, D. Bikiaris, J. Will, A. Hoppe, J. A Roether, and A. R. Boccaccini, Ind. Eng. Chem. Res., 53, 678 (2014).

    Article  CAS  Google Scholar 

  26. Y. Ichikawaa, H. Kondoa, Y. Igarashia, K. Noguchia, K. Okuyamaa, and J. Washiyama, Polymer, 41, 4719 (2000).

    Article  Google Scholar 

  27. J. Zhang, X. Wang, F. Li, and J. Yu, Fibers and Polymers, 13, 1233 (2012).

    Article  CAS  Google Scholar 

  28. K. M. Choi, S. W. Lim, M. C. Choi, D. H. Han, and C. S. Ha, Macromol. Res., 22, 1312 (2014).

    Article  CAS  Google Scholar 

  29. C. F. Ou, J. Polym. Sci. Part B: Polym. Phys., 41, 2902 (2003).

    Article  CAS  Google Scholar 

  30. S. N. Sheikholeslami, M. Rafizadeh, F. A. Taromi, and H. Bouhendi, J. Thermoplastic Comp. Mater., 27, 1530 (2014).

    Article  CAS  Google Scholar 

  31. Y. Wang, W. Liu, and H. Zhang, Polym. Test., 28, 402 (2009).

    Article  CAS  Google Scholar 

  32. S. Fakirov, in Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH, Weinheim, 2005, Chap. 3.

    Book  Google Scholar 

  33. Y. Srithep, P. Nealey, and L. S. Turng, Polym. Eng. Sci., 53, 580 (2013).

    Article  CAS  Google Scholar 

  34. A. El-Hadi, R. Schnabel, E. Straube, G. Muller, and S. Henning, Polym. Test., 21, 665 (2002).

    Article  CAS  Google Scholar 

  35. F. Buchanan, Degradation Rate of Bioresorbable Materials Prediction and Evaluation, Woodhead Publishing Limited, Boca Raton, 2008, Chap. 3 & 9.

    Book  Google Scholar 

  36. Q. Y. Zhu, Y. S. He, J. B. Zeng, Q. Huang, and Y. Z. Wang, Mater. Chem. Phys., 130, 943 (2011).

    Article  CAS  Google Scholar 

  37. J. Xu and B. H. Guo, Biotechnol. J., 5, 1149 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rafizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirali, H., Rafizadeh, M. & Taromi, F.A. Effect of incorporating bis(2-hydroxyethyl) terephthalate on thermal and mechanical properties and degradability of poly(butylene succinate). Macromol. Res. 23, 755–764 (2015). https://doi.org/10.1007/s13233-015-3095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3095-0

Keywords

Navigation