Skip to main content

Advertisement

Log in

Derivation and culture of putative parthenogenetic embryonic stem cells in new gelatin substrates modified with galactomannan

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (ESC) lines to be used for cell therapies must be created and maintained under strict conditions, excluding the use of undefined supplements. Two key steps in the creation of a new embryonic stem cell line are adherence to the substrate and derivation towards the formation of a primary colony. The bovine parthenote embryo model was used to test different matrices of gelatin nanofibers and gelatin/galactomannan films to be used for ESC derivation and culturing. Gelatin/galactomannan films were made in two concentrations of galactomannan, 0.1 and 0.3%, in an aqueous solution of gelatin and tested for gel cytotoxicity using cumulus cells (CCs). CCs showed normal cell morphology, with no sign of lysis or degeneration in any of the matrices tested. Inner cell masses of parthenote blastocysts (n=116) were placed onto the gel matrices for culture. There were three or four repeats for each matrix. Our results showed a good rate of inner cell mass (ICM) adherence on the gelatin/galactomannan films (41%–44%) and one derivative of the gel nanofiber (17% adherence to the substrate). These results encouraged us to try new gelatin formulations to increase the rates of derivation and cell proliferation under defined culture conditions to comply with good manufacturing practice directives for the potential therapeutic use of ESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. J. A. Thomson, J. Itskovitz-Eldo, S. S. Shapiro, M. A. Waknitz, J. J. Swierqiel, V. S. Marshall, and J. M. Jones, Science, 282, 1145 (1998).

    Article  CAS  Google Scholar 

  2. M. J. Martin, A. Muotri, F. Gage, and A. Varki, Nat. Med, 11, 1 (2005).

    Article  Google Scholar 

  3. H. Darr, Y. Mayshar, and N. Benvenisty, Development, 133, 1193 (2006).

    Article  CAS  Google Scholar 

  4. K. Gauthaman, J. R. Venugopal, F. C. Yee, G. S. Peh, S. Ramakrishna, and A. Bongso, J. Cell. Mol. Med., 13, 3475 (2009).

    Article  Google Scholar 

  5. Y. Liu, A. J. Goldberg, J. E. Dennis, G. A. Gronowicz, and L. T. Kuhn, PLoS ONE, 7, e33225 (2012).

    Article  Google Scholar 

  6. D. L. Simpson, N. L. Boyd, S. Kaushal, S. L. Stice, and S. C. Dudley, Biotechnol. Bioeng., 109, 274 (2012).

    Article  CAS  Google Scholar 

  7. C. M. Crocco, N. Frantz, and A. Bos-Mikich, JARG. 30, 315 (2013).

    Google Scholar 

  8. E. Seyedjafari, M. Soleimani, N. Ghaemi, and M. N. Sarbolouki, J. Mater. Sci. Mater. Med., 22, 165 (2011).

    Article  CAS  Google Scholar 

  9. I. Shabani, V. Haddadi-Asi, M. Soleimani, E. Seyedjafari, F. Babaeijandaghi, and N. Ahmadbeigi, Tissue Eng. Part A, 17, (2001).

  10. V. Beachley and X. Wen, Prog. Polym. Sci., 35, 868 (2000).

    Article  Google Scholar 

  11. W. T. Godbey and A. Atala, Ann. N.Y. Acad. Sci., 961, 10 (2002).

    Article  CAS  Google Scholar 

  12. R. Cancedda, B. Dozin, P. Giannoni, and R. Quarto, Matrix Biol. 22, 81 (2003).

    Article  CAS  Google Scholar 

  13. W. W. Thein-Wan, V. Saikhun, C. Pholpramoo, R. D. K. Misra, and Y. Kitiyanant, Acta Biomater., 5, 3453 (2009).

    Article  Google Scholar 

  14. K. Gauthaman, J. R. Venugopal, F. C. Yee, G. S. L. Peh, S. Ramakrishna, and A. Bongso, J. Cell. Mol. Med., 13, 3475 (2009).

    Article  Google Scholar 

  15. J. H. Ko, H. Y. Yin, J. An, D. J. Chung, J.-H. Kins, S. B. Lee, and D. G. Pyun, Macromol. Res., 18, 137 (2010).

    Article  CAS  Google Scholar 

  16. Y. C. Lim, J. Johnson, Z. Fei, Y. Wu, D. F. Farson, J. J. Lannutti, H. W. Choi, and L. J. Lee, Biotechnol. Bioeng., 108, 116 (2011).

    Article  CAS  Google Scholar 

  17. S. Rungsiyanont, N. Dhanesuan, S. Swasdison, and S. Kasugai, J. Biomater. Appl., 22, 1 (2011).

    Google Scholar 

  18. S.-C. Wu, W.-H. Chang, G.-C. Dong, K.-Y. Chen, Y.-S. Chen, and C.-H. Yao, J. Bioact. Compat. Polym., 26, 565 (2011).

    Article  CAS  Google Scholar 

  19. H. Wang, Y. Feng, H. Zhao, R. Xiao, J. Lu, L. Zhang, and J. Guo, Macromol. Res., 20, 347 (2012).

    Article  Google Scholar 

  20. H. Wang, Y. Feng, Z. Fang, R. Xiao, W. Yuan, and M. Khan, Macromol. Res., 21, 860 (2013).

    Article  CAS  Google Scholar 

  21. E. Rosellini, C. Cristallini, N. Barbani, G. Vozzi, and P. Giusti, J. Biomed. Mater. Res. A, 91, 447 (2009).

    Article  Google Scholar 

  22. E. Yasuda, Y. Seki, T. Higuchi, F. Nakashima, T. Noda, and H. Kurosawa, J. Biosci. Bioeng., 107, 442 (2009).

    Article  CAS  Google Scholar 

  23. A. Choo and S. K. Lim, in Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases, Methods in Biomolecular Biology, N. I. Z. Nieden, Ed., Springer Science, New York, 2011, Vol. 690, pp 175–182.

    Article  CAS  Google Scholar 

  24. C. Michon, G. Cuvelier, P. Relkin, and B. Launay, Int. J. Biol. Macromol., 20, 259 (1997).

    Article  CAS  Google Scholar 

  25. Y. Tsao, A. Cardoso, R. Condon, M. Voloch, P. Lio, J. Lagos, B. Kearns, and Z. Liu, J. Biotechnol., 118, 290 (2005).

    Article  Google Scholar 

  26. C. Altamirano, C. Paredes, A. Illanes, J. J. Cairo, and F. Godia, J. Biotechnol., 110, 171 (2004).

    Article  CAS  Google Scholar 

  27. C. Altamirano, A. Illanes, S. Becerra, J. J. Cairo, and F. Godia, J. Biotechnol., 125, 547 (2006).

    Article  CAS  Google Scholar 

  28. J. Berrios, C. Altamirano, N. Osses, and R. Gonzales, Chem. Eng. Sci., 66, 2431 (2011).

    Article  CAS  Google Scholar 

  29. T. Ryll, U. Valley, and R. Wagner, Biotechnol. Bioeng., 44, 184 (1994).

    Article  CAS  Google Scholar 

  30. X. Gu and D. I. C. Wang, Biotechnol. Bioeng., 58, 643 (1998).

    Google Scholar 

  31. B. Follstad, U.S. Patent No.2004/00810 (2004).

    Google Scholar 

  32. V. D. Shcherbukhin and O. V. Anulov, Appl. Biochem. Microbiol., 35, 229 (1999).

    Google Scholar 

  33. V. D. Prajapati, G. K. Jani, N. G. Moradiya, N. P. Randeria, B. J. Nagar, N. N. Naikwadi, and B. C. Variya, Int. J. Biol. Macromol., 60, 83 (2013).

    Article  CAS  Google Scholar 

  34. F. E. Noll, W. Senaratne, and Y. Wei, U.S. Patent No. 2008/ 0220524 A1 (2008).

    Google Scholar 

  35. M. Qingyuan, A. Haque, B. Hexig, and T. Akaike, Biomaterials, 33, 1414 (2012).

    Article  Google Scholar 

  36. F. T. Liu and G. A. Rabinovich, Nat. Rev. Cancer, 5, 29 (2005).

    Article  CAS  Google Scholar 

  37. D. Neri and R. Bicknell, Nat. Rev. Cancer, 5, 436 (2005).

    Article  CAS  Google Scholar 

  38. N. L. Perillo, C. H. Uittenbogaart, J. T. Nguyen, and L. G. Baum, J. Exp. Med., 185, 1851 (1997).

    Article  CAS  Google Scholar 

  39. M. C. Miller, A. A. Klyosov, and K. H. Mayo, Glycobiology, 19, 1034 (2009).

    Article  CAS  Google Scholar 

  40. S. K. Bhatia and A. B. Yetter, Cell Biol. Toxicol., 24, 315 (2008).

    Article  Google Scholar 

  41. R. R. Ruggeri, Y. Watanabe, F. Meirelles, F. F. Bressan, N. Frantz, and A. Bos-Mikich, J. Assist. Reprod. Genet., 29, 1039 (2012).

    Article  CAS  Google Scholar 

  42. E. Ruoslahti, Annu. Rev. Cell Dev. Biol., 12, 697 (1996).

    Article  CAS  Google Scholar 

  43. M. D. Pierschbacher and E. Ruoslahti, Nature, 309, 30 (1984).

    Article  CAS  Google Scholar 

  44. E. F. Irwin, R. Gupta, D. C. Dashti, and K. E. Healy, Biomaterials, 32, 6912 (2011).

    Article  CAS  Google Scholar 

  45. H. Hajiali, S. Shahgasempour, M. R. Naimi-Jamal, and H. Peirovi, Int. J. Nanomedicine, 6, 2133 (2011).

    Article  CAS  Google Scholar 

  46. A. Finne-Wistrand, A. C. Albertsson, O. H. Kwon, N. Kawazoe, G. Chen, I. K. Kang, H. Hasuda, J. Gong, and Y. Ito, Macromol. Biosci., 8, 951 (2008).

    Article  CAS  Google Scholar 

  47. N. Desai, J. Ludgin, J. Goldberg, and T. Falcone, J. Assist. Reprod. Genet., 30, 609 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Bos-Mikich.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, R.R., Bressan, F.F., Siqueira, N.M. et al. Derivation and culture of putative parthenogenetic embryonic stem cells in new gelatin substrates modified with galactomannan. Macromol. Res. 22, 1053–1058 (2014). https://doi.org/10.1007/s13233-014-2151-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2151-5

Keywords