Skip to main content
Log in

Basic amino acid-conjugated polyamidoamine dendrimers with enhanced gene transfection efficiency

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, we characterized the polyamidoamine (PAMAM) dendrimer derivatives conjugated with basic amino acids as effective nonviral vector systems for gene delivery. Using PAMAM dendrimer (generation 4) as a core polymer, we further synthesized PAMAM G4-Histidine-Lysine (PAMAM G4-H-K) and PAMAM G4-Histidine-Ornithine (PAMAM G4-H-O). Lysine and ornithine have cationic charged groups that can contribute to the condensation of DNA and interaction with cellular membranes. Histidine has an imidazole ring group that can induce a proton buffering effect. In this report, we performed experiment to evaluate the basic amino acid-PAMAM conjugates as efficient and safe gene carriers. The mean diameter and zeta potential value of the PAMAM conjugates/DNA complex were measured to be around 100 nm and 30 mV, respectively. It was observed that the PAMAM derivatives and plasmid DNA can form polyplexes at weight ratio 1.5 by agarose gel retardation and PicoGreen reagent assay. Furthermore, the PAMAM derivatives have shown high buffering capacity compared to the native PAMAM dendrimer. We performed the cytotoxicity and transfection assay in the HeLa, HepG2, HEK 293, and NIH3T3 cell lines. While the transfection efficiency was remarkable in all cell lines tested, the cytotoxicity level was very low. Based on these characteristics, it is suggested that the basic amino acid-conjugated PAMAM dendrimers could be utilized as promising gene delivery polymeric vectors for effective gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Aldawsari, R. Edrada-Ebel, D. R. Blatchford, R. J. Tate, L. Tetley, and C. Dufes, Biomaterials, 32, 5889 (2011).

    Article  CAS  Google Scholar 

  2. D. Luo and W. M. Saltzman, Nat. Biotechnol., 18, 33 (2000).

    Article  CAS  Google Scholar 

  3. W. Chen, N. J. Turro, and D. A. Tomalia, Langmuir, 16, 15 (2000).

    Article  Google Scholar 

  4. C. Dufes, I. F. Uchegbu, and A. G. Schatzlein, Adv. Drug Deliv. Rev., 57, 2177 (2005).

    Article  CAS  Google Scholar 

  5. D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel, Biomaterials, 24, 1121 (2003).

    Article  CAS  Google Scholar 

  6. J. F. Kukowska-Latallo, A. U. Bielinska, J. Johnson, R. Spindler, D. A. Tomalia, and J. R. Baker, Proc. Natl. Acad. Sci. U.S.A., 93, 4897 (1996).

    Article  CAS  Google Scholar 

  7. A. Kumar, V. K. Yellepeddi, G. E. Davies, K. B. Strychar, and S. Palakurthi, Int. J. Pharm., 392, 294 (2010).

    Article  CAS  Google Scholar 

  8. M. Manunta, P. H. Tan, P. Sagoo, K. Kashefi, and A. J. T. George, Nucleic Acids Res., 32, 2730 (2004).

    Article  CAS  Google Scholar 

  9. L. Vincent, J. Varet, J.-Y. Pille, H. Bompais, P. Opolon, A. Maksimenko, C. Malvy, M. Mirshahi, H. Lu, J.-P. Vannier, C. Soria, and H. Li, Int. J. Cancer, 105, 419 (2003).

    Article  CAS  Google Scholar 

  10. C. Wang, J. G. Delcros, J. Biggerstaff, and O. Phanstiel Iv, J. Med. Chem., 46, 2672 (2003).

    Article  CAS  Google Scholar 

  11. A. Saovapakhiran, A. Emanuele, D. Attwood, and J. Penny, Bioconjug. Chem., 20, 693 (2009).

    Article  CAS  Google Scholar 

  12. H. L. Amand, H. A. Rydberg, L. H. Fornander, P. Lincoln, B. Norden, and E. K. Esbjorner, Biochim. Biophys. Acta, 1818, 2669 (2012).

    Article  Google Scholar 

  13. J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, and P. A. Wender, J. Am. Chem. Soc., 126, 9506 (2004).

    Article  CAS  Google Scholar 

  14. T. A. Theodossiou, A. Pantos, I. Tsogas, and C. M. Paleos, Chem. Med. Chem., 3, 1635 (2008).

    Article  CAS  Google Scholar 

  15. N. Sakai, S. Futaki, and S. Matile, Soft Matter, 2, 636 (2006).

    Article  CAS  Google Scholar 

  16. A. Mishra, V. D. Gordon, L. Yang, R. Coridan, and G. C. L. Wong, Angew. Chem. Int. Ed. Engl., 120, 3028 (2008).

    Article  Google Scholar 

  17. H. Aldawsari, B. S. Raj, R. Edrada-Ebel, D. R. Blatchford, R. J. Tate, L. Tetley, and C. Dufes, Nanomedicine, 7, 615 (2011).

    Article  CAS  Google Scholar 

  18. J. S. Choi, K. Nam, J. Y. Park, J. B. Kim, J. K. Lee, and J. S. Park, J. Control. Release, 99, 445 (2004).

    Article  CAS  Google Scholar 

  19. Y. Gao, Z. Xu, S. Chen, W. Gu, L. Chen, and Y. Li, Int. J. Pharm., 359, 241 (2008).

    Article  CAS  Google Scholar 

  20. T. I. Kim, J. U. Baek, C. Z. Bai, and J. S. Park, Biomaterials, 28, 2061 (2007).

    Article  CAS  Google Scholar 

  21. T. I. Kim, M. Ou, M. Lee, and S. W. Kim, Biomaterials, 30, 658 (2009).

    Article  CAS  Google Scholar 

  22. Y. Takechi, H. Tanaka, H. Kitayama, H. Yoshii, M. Tanaka, and H. Saito, Chem. Phys. Lipids., 165, 51 (2012).

    Article  CAS  Google Scholar 

  23. H. L. Amand, K. Fant, B. Norden, and E. K. Esbjorner, Biochem. Biophys. Res. Commun., 371, 621 (2008).

    Article  Google Scholar 

  24. M. E. Martin and K. G. Rice, AAPS J., 9, 18 (2007).

    Article  Google Scholar 

  25. J. S. Choi, E. J. Lee, H. S. Jang, and J. S. Park, Bioconjug. Chem., 12, 108 (2001).

    Article  CAS  Google Scholar 

  26. D. Fischer, T. Bieber, Y. Li, H. P. Elsässer, and T. Kissel, Pharm. Res., 16, 1273 (1999).

    Article  CAS  Google Scholar 

  27. J. Haensler and F. C. Szoka, Bioconjug. Chem., 4, 372 (1993).

    Article  CAS  Google Scholar 

  28. G. S. Yu, Y. M. Bae, H. Choi, B. Kong, I. S. Choi, and J. S. Choi, Bioconjug. Chem., 22, 1046 (2011).

    Article  CAS  Google Scholar 

  29. R. I. Mahat, O. D. Monera, L. C. Smith, and A. Rolland, Curr. Opin. Mol. Ther., 1, 226 (1999).

    CAS  Google Scholar 

  30. A. Pathak, P. Kumar, K. Chuttani, S. Jain, A. K. Mishra, S. P. Vyas, and K. C. Gupta, ACS Nano, 3, 1493 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Sang Park or Joon Sig Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Park, JS. & Choi, J.S. Basic amino acid-conjugated polyamidoamine dendrimers with enhanced gene transfection efficiency. Macromol. Res. 22, 500–508 (2014). https://doi.org/10.1007/s13233-014-2073-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2073-2

Keywords

Navigation