Skip to main content
Log in

Synthesis and characterization of well defined polysulfone-g-poly(styrenesulfonic acid) graft copolymers for proton exchange membrane

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A series of amorphous graft copolymers of polysulfone-g-poly(styrenesulfonic acid) (PSF-g-PSSA) with well-defined structures was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Graft copolymers of three different graft densities, i.e., 8, 5.5, and 3 grafts per chain, with three different degrees of polymerization (DP) of PSSA for each graft density were prepared. The obtained copolymers were transformed into proton exchange membranes, and well-separated simple two phase morphology was targeted in their hydrated states. They were characterized based on water uptake, ion exchange capacity (IEC), proton conductivity, and thermal stability. Water uptake increased as the wt% of the ionic graft or IEC increased. For a similar value of IEC, the water uptake for the graft copolymer decreased with higher graft density. The proton conductivities of the graft membranes were in the range of 2.1×10−3 to 1.36×10−1 S/cm. Proton conductivity increased as the IEC increased. However, when the wt% of PSSA was lower than 20%, very low proton conductivities were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Whittingham, R. F. Savinell, and T. Zawodzinski, Chem. Rev., 104, 4243 (2004).

    Article  CAS  Google Scholar 

  2. M. K. Ravikumar and A. K. Shukla, J. Electrochem. Soc., 143, 2601 (1996).

    Article  CAS  Google Scholar 

  3. A. Heinzel and V. M. Barragán, J. Power Sources, 84, 70 (1999).

    Article  CAS  Google Scholar 

  4. T. Schultz, S. Zhou, and K. Sundmacher, Chem. Eng. Technol., 24, 1223 (2001).

    Article  CAS  Google Scholar 

  5. J. Wang, S. Wasmus, and R. F. Savinell, J. Electrochem. Soc., 142, 4218 (1995).

    Article  CAS  Google Scholar 

  6. C. Manea and M. Mulder, J. Memb. Sci., 206, 443 (2002).

    Article  CAS  Google Scholar 

  7. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Memb. Sci., 197, 231 (2002).

    Article  CAS  Google Scholar 

  8. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, J. Memb. Sci., 212, 263 (2003).

    Article  CAS  Google Scholar 

  9. M. L. Ponec, L. Prado, B. Ruffmann, K. Richau, R. Mohr, and S. P. Nunes, J. Memb. Sci., 217, 5 (2003).

    Article  Google Scholar 

  10. K. D. Kreuer, in Handbook of Fuel Cells: Fundermentals, Technology, and Applications, John Wiley and Sons Inc., 2003, Vol. 3, p 420.

    Google Scholar 

  11. V. Mehta and J. S. Cooper, J. Power Sources, 114, 32 (2003).

    Article  CAS  Google Scholar 

  12. J. F. Ding, C. Chuy, and S. Holdcroft, Macromolecules, 35, 1348 (2002).

    Article  CAS  Google Scholar 

  13. S. Yang, Z. Shi, and S. Holdcroft, Macromolecules, 37, 1678 (2004).

    Article  CAS  Google Scholar 

  14. Y. A. Elabd, E. Napadensky, C. W. Walker, and K. I. Winey, Macromolecules, 39, 399 (2006).

    Article  CAS  Google Scholar 

  15. I. W. Hamley, The Physics of Block Copolymers, Oxford Univ. Press, New York, 1998.

    Google Scholar 

  16. H. S. Lee, A. Roy, A. S. Badami, and J. E. McGrath, Macromol. Res., 15, 160 (2007).

    Article  CAS  Google Scholar 

  17. M. Lee, J. K. Park, H.-S. Lee, O. Lane, R. B. Moore, J. E. McGrath, and D. G. Baird, Polymer, 50, 6129 (2009).

    Article  CAS  Google Scholar 

  18. J. F. Ding, C. Chuy, and S. Holdcroft, Adv. Funct. Mater., 12, 389 (2002).

    Article  CAS  Google Scholar 

  19. J. F. Ding, C. Chuy, and S. Holdcroft, Chem. Mater., 13, 2231 (2001).

    Article  CAS  Google Scholar 

  20. C. G. Cho, H. Y. Jang, Y. G. You, G. H. Li, and S. G. An, High Perform. Polym., 18, 579 (2006).

    Article  CAS  Google Scholar 

  21. G. H. Li, S. G. An, and C. G. Cho, Polymer Prepr., 46, 426 (2005).

    CAS  Google Scholar 

  22. A. B. LaConti, M. Hamdan, and R. C. McDonald, in Handbook of Fuel Cells, W. Vielstich, H. A. Gasteiger, and L. Lamm, Eds., John Wiley & Sons, New York, 2003, Vol. 3, p 647.

    Google Scholar 

  23. J. Chiefari, Y. K. Chong, F. Ercole, J. Kristina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 31, 5559 (1998).

    Article  CAS  Google Scholar 

  24. Y. Mitsukami, M. S. Donovan, A. B. Lowe, and C. L. McCormick, Macromolecules, 34, 2248 (2001).

    Article  CAS  Google Scholar 

  25. G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem., 58, 379 (2005).

    Article  CAS  Google Scholar 

  26. E. M. W. Tsang, Z. Zhang, Z. Shi, T. Soboleva, and S. Holdcroft, J. Am. Chem. Soc., 129, 15106 (2007).

    Article  CAS  Google Scholar 

  27. Z. Zhang, E. Chalkova, M. Fedkin, C. Wang, S. N. Lvov, S. Komarneni, and T. C. M. Chung, Macromolecules, 41, 9130 (2008).

    Article  CAS  Google Scholar 

  28. G. Xiao, S. Zhu, D. Yan, and J. Xu, Polym. Int., 51, 673 (2002).

    Article  CAS  Google Scholar 

  29. T. A. Zawodzinski, M. Neeman, L. O. Sillerud, and S. Gottesfeld, J. Phys. Chem., 95, 6040 (1991).

    Article  CAS  Google Scholar 

  30. W. Zhang, X. Jiang, Z. He, D. Xiong, P. Zheng, Y. An, and L. Shi, Polymer, 47, 8203 (2006).

    Article  CAS  Google Scholar 

  31. G. Riess, Prog. Polym. Sci., 28, 1107 (2003).

    Article  CAS  Google Scholar 

  32. Y. K. Chong, J. Krstina, T. P. T. Le, G. Moad, A. Postma, E. Rizzardo, and S. H. Thang, Macromolecules, 36, 2256 (2003).

    Article  CAS  Google Scholar 

  33. C. G. Cho, S. H. Kim, Y. C. Park, H. Kim, and J.-W. Park, J. Memb. Sci., 308, 96 (2008).

    Article  CAS  Google Scholar 

  34. M. M. Nasef and H. Saidi, Polym. Degrad. Stab., 70, 497 (2000).

    Article  Google Scholar 

  35. S. Gottesfeld and T. A. Zawodzinski, Adv. Electrochem. Sci. Eng., 5, 195 (1997).

    Article  CAS  Google Scholar 

  36. T. Saito, B. D. Mather, P. J. Costanzo, F. L. Beyer, and T. E. Long, Macromolecules, 41, 3503 (2008).

    Article  CAS  Google Scholar 

  37. Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. Harrison, T. A. Zawodzinski, and J. E. McGrath, J. Polym. Sci. Part B: Polym. Phys., 41, 2816 (2003).

    Article  CAS  Google Scholar 

  38. L. Wang, L. Zhang, and J. Lin, J. Chem. Phys., 129, 114905 (2008).

    Article  Google Scholar 

  39. A. Shinozaki, D. Jasnow, and A. C. Balazs, Macromolecules, 27, 2496 (1994).

    Article  CAS  Google Scholar 

  40. M. G. Sumner, W. L. Harrison, R. M. Weyers, Y. S. Kim, J. E. McGrath, J. S. Riffle, A. Brink, and M. H. Brink, J. Memb. Sci., 239, 199 (2004).

    Article  CAS  Google Scholar 

  41. M. J. Park, N. P. Balsara, and A. Jackson, Macromolecules, 42, 6808 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Gi Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Cho, C.G. Synthesis and characterization of well defined polysulfone-g-poly(styrenesulfonic acid) graft copolymers for proton exchange membrane. Macromol. Res. 19, 1142–1150 (2011). https://doi.org/10.1007/s13233-011-1101-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-1101-8

Keywords

Navigation