Skip to main content
Log in

Multi functionalization of polypropylene with controlled degradation and its structure characterization

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The multi functionalization of isotactic polypropylenes (iPP) with glycidyl methacrylate (GMA) was carried out by in situ chlorinating graft copolymerization (ISCGC), in which chlorine (Cl2) is used as a radical initiator as well as a radical scavenger. The molecular weight measurement indicates that functionalized iPP with controlled degradation could be obtained because the unstable radicals that induce iPP degradation could be terminated quickly by chlorine. Owing to the unique allyl-containing structure of GMA, multi functionalized iPP could be synthesized under the effect of chlorine, which contained both epoxy groups and C=C double bonds as well as trace amount of chlorine atoms in the functionalized polymer structure. The structure of both the functionalization polymer and homopolymer formed in this system were analyzed by FTIR and 1H NMR. The mechanism of grafting reaction, iPP chain degradation, and GMA homopolymer formation scheme in ISCGC were proposed. The thermal properties of the functionalized polymer are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Saxena, A. R. Ray, and B. Gupta, J. Appl. Polym. Sci., 116, 2884 (2010).

    CAS  Google Scholar 

  2. Z. X. Dong, Z. M. Liu, B. X. Han, J. He, T. Jiang, and G. Y. Yang, J. Mater. Chem., 12, 3565 (2002).

    Article  CAS  Google Scholar 

  3. D. A. Shi, H. B. Chen, and R. K. Y. Li, J. Mater. Sci., 42, 9495 (2007).

    Article  CAS  Google Scholar 

  4. B. Pan, K. Viswanathan, C. E. Hoyle, and R. B. Moore, J. Polym. Sci. Part A: Polym. Chem., 42, 1953 (2004).

    Article  CAS  Google Scholar 

  5. Y. T. Zhu, L. J. An, and W. Jiang, Macromolecules, 36, 3714 (2003).

    Article  CAS  Google Scholar 

  6. R. H. Zhang, Y. T. Zhu, J. G. Zhang, W. Jiang, and J. H. Yin, J. Polym. Sci. Part A: Polym. Chem., 43, 5529 (2005).

    Article  CAS  Google Scholar 

  7. N. Abacha and S. Fellahi, Polym. Int., 54, 909 (2005).

    Article  CAS  Google Scholar 

  8. T. Liu, G. H. Hu, G. S. Tong, L. Zhao, G. P. Cao, and W. K. Yuan, Ind. Eng. Chem. Res., 44, 4292 (2005).

    Article  CAS  Google Scholar 

  9. G. Alessandro, R. D. Gregorio, G. Spadaro, O. Scialdone, and G. Filardo, Macromolecules, 37, 4580 (2004).

    Article  Google Scholar 

  10. J. S. Parent and S. S. Sengupta, Macromolecules, 38, 5538 (2005).

    Article  CAS  Google Scholar 

  11. J. Wang, D. F. Wang, W. Du, E. G. Zou, and Q. Dong, J. Appl. Polym. Sci., 113, 1803 (2009).

    Article  CAS  Google Scholar 

  12. E. L. Burton, M. Woodhead, P. Coates, and T. Gough, J. Appl. Polym. Sci., 117, 2707 (2010).

    CAS  Google Scholar 

  13. S. Verenich, S. Paul, and B. Pourdeyhimi, J. Appl. Polym. Sci., 108, 2983 (2008).

    Article  CAS  Google Scholar 

  14. Y. J. Sun, G. H. Hu, and M. Lambla, J. Appl. Polym. Sci., 57, 1043 (1994).

    Article  Google Scholar 

  15. H. Huang and N. C. Liu, J. Appl. Polym. Sci., 67, 1957 (1998).

    Article  CAS  Google Scholar 

  16. H. Cartier and G. H. Hu, J. Polym. Sci. Part A: Polym. Chem., 36, 1053 (1998).

    Article  CAS  Google Scholar 

  17. X. M. Xie, N. H. Chen, B. H. Guo, and S. Li, Polym. Int., 49, 1677 (2000).

    Article  CAS  Google Scholar 

  18. H. Cartier and G. H. Hu, J. Mater. Sci., 35, 1985 (2000).

    Article  CAS  Google Scholar 

  19. S. Paul, S. Verenich, and B. Pourdeyhimi, Polym. Int., 57, 975 (2008).

    Article  CAS  Google Scholar 

  20. Y. H. Ao, K. Tang, N. Xu, H. D. Yang, and H. X. Zhang, Polym. Bull., 59, 279 (2007).

    Article  CAS  Google Scholar 

  21. Q. Wei, D. Chionna, E. Galoppini, and M. Pracella, Macromol. Chem. Phys., 204, 1123 (2003).

    Article  CAS  Google Scholar 

  22. M. Pracella and D. Chionna, Macromol. Symp., 218, 173 (2004).

    CAS  Google Scholar 

  23. Y. Pietrasanta, J. J. Robin, N. Torres, and B. Boutevin, Macromol. Chem. Phys., 200, 142 (1999).

    Article  CAS  Google Scholar 

  24. L. Y. Zhang, G. Q. Fan, C. Y. Guo, J. Y. Dong, Y. L. Hu, and M. B. Huang, Polym. Int., 55, 675 (2006).

    Article  CAS  Google Scholar 

  25. Z. M. Wang, H. Hong, and T. C. Chung, Macromolecules, 38, 8966 (2005).

    Article  CAS  Google Scholar 

  26. B. Lu and T. C. Chung, Macromolecules, 32, 2525 (1999).

    Article  CAS  Google Scholar 

  27. S. Coiai, E. Passaglia, M. Aglietto, and F. Ciardelli, Macromolecules, 37, 8414 (2004).

    Article  CAS  Google Scholar 

  28. C. Bae, J. F. Hartwig, N. K. Boaen Harris, R. O. Long, and K. S. Anderson, and M. A. Hillmyer, J. Am. Chem. Soc., 127, 767 (2005).

    Article  CAS  Google Scholar 

  29. L. C. Zhu, G. B. Tang, Q. Shi, C. L. Cai, and J. H. Yin, J. Polym. Sci. Part B: Polym. Phys., 44, 134 (2006).

    Article  CAS  Google Scholar 

  30. J. R. Zhao, J. Y. Li, Y. Feng, and J. H. Yin, Polym. Adv. Technol., 18, 822 (2007).

    Article  CAS  Google Scholar 

  31. L. Zhang, Y. Y. Sun, Y. Q. Ma, J. R. Zhao, Y. Feng, and J. H. Yin, Polym. Bull., 63, 341 (2009).

    Article  CAS  Google Scholar 

  32. J. Brandrup and E. H. Immergut, in Polymer Handbook, 4th ed., Wiley, New York, 1999, p VII 10.

    Google Scholar 

  33. Z. M. O. Rzaev, A. Yilmazbayhan, and E. Alper, Adv. Polym. Sci., 26, 41 (2007).

    CAS  Google Scholar 

  34. B. De Roover, M. Sclavons, V. Carlier, J. Devaux, R. Legras, and A. Momtaz, J. Polym. Sci. Part A: Polym. Chem., 33, 829 (1995).

    Article  Google Scholar 

  35. B. De Roover, J. Devaux, and R. Legras, J. Polym. Sci. Part A: Polym. Chem., 34, 1195 (1996).

    Article  Google Scholar 

  36. S. H. P. Bettini and J. A. M. Agnelli, J. Appl. Polym. Sci., 74, 247 (1999).

    Article  CAS  Google Scholar 

  37. S. H. P. Bettini and J. A. M. Agnelli, J. Appl. Polym. Sci., 85, 2706 (2002).

    Article  CAS  Google Scholar 

  38. P. F. Cañamero, J. L. de la Fuente, E. L. Madruga, and M. Fernández-Garcıía, Macromol. Chem. Phys., 205, 2221 (2004).

    Article  Google Scholar 

  39. E. Pretsch, P. Bühlmann, and C. Affolter, in Structure Determination of Organic Compounds Tables of Spectral Data, 3rd ed., Springer-Verlag publishers, Heidelberg, 2000, p 11.

    Google Scholar 

  40. H. W. Xiao, F. Y. Yu, Y. Yu, and S. Q. Huang, J. Appl. Polym. Sci., 104, 2515 (2007).

    Article  CAS  Google Scholar 

  41. J. L. de la Fuente, P. F. Cañamero, and M. J. Fernández-García, J. Polym. Sci. Part A: Polym. Chem., 44, 1807 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiruo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Wang, N., Meng, L. et al. Multi functionalization of polypropylene with controlled degradation and its structure characterization. Macromol. Res. 19, 951–964 (2011). https://doi.org/10.1007/s13233-011-0907-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0907-8

Keywords

Navigation