Skip to main content
Log in

Analytical and numerical simulation investigation in effects of radiation and porosity on a non-orthogonal stagnation-point flow towards a stretching sheet

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

The steady two-dimensional non-orthogonal flow near the stagnation point on a stretching sheet embedded in a porous medium in the presence of radiation effects is studied. Using similarity variables, the nonlinear boundary-layer equations are solved analytically by homotopy perturbation method (HPM) employing Padé technique. Comparison between the results of HPM-Padé solution and numerical simulation as well as some other results which are available in the literature, demonstrates a very good agreement between them and the HPM-Padé solution provides a convenient way to control and adjust the convergence region of a system of nonlinear boundary-layer problems with high accurate. The effect of involved parameters such as striking angle, radiation parameter, porosity parameter and the Prandtl number on flow and heat transfer characteristics have been discussed with more details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Weidman and J. Paullet, Analysis of stagnation point flow toward a stretching sheet, Inter J. Non-Linear Mechanics, 42 (2007), 1084–1091.

    Article  MATH  Google Scholar 

  2. Hiemenz and K. Die, Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder, Dinglers Polytech. J., 236 (1911), 321–324.

    Google Scholar 

  3. T. C. Chiam, Stagnation-point flow towards a stretching plate, J. Physical Soc. of Japan, 63(6) (1994), 2443–2444.

    Article  Google Scholar 

  4. L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phys. (ZAMP), 21 (1970), 645–647.

    Article  Google Scholar 

  5. P. D. McCormak and L. J. Crane, Physical Fluid Dynamics, Academic Press, New York, (1973).

    Google Scholar 

  6. A. S. Gupta and T. R. Mahapatra, Stagnation-Point Flow Towards a Stretching Surface, The Can. J. Chem. Engng., 81(2) (2003), 258–263.

    Google Scholar 

  7. N. A. Yacob, A. Ishak and I. Pop, Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid, Computers & Fluids, 47(1)(2011), 16–21.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Z. Salleh, R. Nazar and I. Pop, Forced Convection Boundary Layer How at a Forward Stagnation Point with Newtonian Heating, Chem. Engng. Commun., 196(9) (2009), 987–996.

    Google Scholar 

  9. A. Noghrehabadi, R. Pourrajab and M. Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, Inter. J. Thermal Sci., 54 (2012), 253–261.

    Article  Google Scholar 

  10. D. Li, F. Labropulu and I. Pop, Oblique stagnation-point flow of a viscoelastic fluid with heat transfer, Inter. J. Non-Linear Mechanics, 44 (2009), 1024–1030.

    Article  MATH  Google Scholar 

  11. S. P. Anjali Devi and B. Ganga, Dissipation effects on MHD nonlinear flow and heat transfer past a porous surface with prescribed heat flux, J. Appl. Fluid Mechanics, 3 (2008), 1–6.

    Google Scholar 

  12. P. R. Sharma and G. Singh, Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet, J. Appl. Fluid Mechanics, 2 (2009), 13–21.

    Google Scholar 

  13. R. Tamizharasi and V. Kumaran, Pressure in MHD/Brinkman flow past a stretching sheet, Commun. Nonlinear Sci. and Num. Simulation, 16(12) (2011), 4671–4681.

    Article  MATH  Google Scholar 

  14. D. Pal and H. Mondal, Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 1553–1564.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Hayat, T. Javed and Z. Abbas, MHD flow of a micropolar fluid near a stagnation point towards a non-linear stretching surface, Nonlinear Analysis: Real World Applications, 10 (2009), 1514–1526.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. B. McLeod and K. R. R., On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary, Arch. Ration. Mech. Anal., 98 (1987), 358–393.

    Google Scholar 

  17. S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D., Shanghai Jiao Tong University, (1992).

    Google Scholar 

  18. S. J. Liao, Beyond perturbation: introduction to the homotopy analysis method, Chapman &Hall/CRC Press (2003).

    Book  Google Scholar 

  19. J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Inter. J. Non-Linear Mechanics, 35 (2000), 37–43.

    Article  MATH  Google Scholar 

  21. J. H. He, A simple perturbation approach to Blasius equation, Appl. Math. Comput., 140 (2003), 217–22.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Esmaeilpour and D. D. Ganji, Application of He’ s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate, Phys. Lett. A, 372 (2007), 33–8.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Yildirim, Application of He’ s homotopy perturbation method for solving the Cauchy reaction-diffusion problem, Comput. Math. Appl., 57(4) (2009), 612–618.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Yildirim and H. Kogak, Homotopy perturbation method for solving the space-time fractional advection-dispersion equation, Adv. Water Resour., 32(12) (2009), 1711–1716.

    Article  Google Scholar 

  25. M. Omidvar, A. Barari, M. Momeni and D. D. Ganji, New class of solutions for water infiltration problems in unsaturated soils, Geomech Geoeng: Int. J., 5 (2010), 127–35.

    Article  Google Scholar 

  26. D. D. Ganji, The application of He’ s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys. Lett. A, 355 (2006), 337–341.

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Y. Lok, N. Amin and I. Pop, Non-orthogonal stagnation point flow towards a stretching sheet, Inter. J. Non-Linear Mechanics, 41 (2006), 622–627.

    Article  Google Scholar 

  28. P. Singh, N. S. Tomer and D. Sinha, Oblique Stagnation-Point Darcy Flow towards a Stretching Sheet, J. Appl. Fluid Mechanics, 5(3) (2012), 29–37.

    Google Scholar 

  29. G. A. Baker, Essentials of Padé Approximants, Academic Press, London, (1975).

    MATH  Google Scholar 

  30. J. Boyd, Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain, Comput. Phys., 11(3) (1997), 299–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shotorban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganji, D.D., Jafarmadar, S., Jalilpour, B. et al. Analytical and numerical simulation investigation in effects of radiation and porosity on a non-orthogonal stagnation-point flow towards a stretching sheet. Indian J Pure Appl Math 45, 415–432 (2014). https://doi.org/10.1007/s13226-014-0071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-014-0071-x

Key words

Navigation