Skip to main content
Log in

Off-road Robotics—An Overview

  • Übersichtsbeitrag
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

This article gives an overview of the current state of research in the field of off-road robotics. It focuses on techniques used in the areas of perception, environment representation, as well as navigation, and introduces different types of robot control systems. A presentation of different applications is given along with an outlook on future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://www.darpa.mil/grandchallenge05/.

  2. http://elrob.org/.

  3. http://www.velodyne.com/.

  4. pmd: Photonic Mixer Device.

  5. hdrc: High Dynamic Range cmos.

References

  1. Albus J (1987) NASA/NBS standard reference model for telerobot control system architecture (NASREM). Tech. rep., NIST

  2. Albus J (2002) A reference model architecture for intelligent unmanned ground vehicles. In: Proc SPIE 16th annual international symposium on aerospace/defense sensing, simulation and controls. CiteSeer, pp 303–310

    Google Scholar 

  3. Andersen J, Blas M, Ravn O, Andersen N, Blanke M (2006) Traversable terrain classification for outdoor autonomous robots using single 2D laser scans. Integr Comput-Aided Eng 13(3):223–232

    Google Scholar 

  4. Arkin R (1998) Behaviour-based robotics. MIT Press, Cambridge

    Google Scholar 

  5. Armbrust C, Braun T, Föhst T, Proetzsch M, Renner A, Schäfer H, Berns K (2010) RAVON—the robust autonomous vehicle for off-road navigation. In: Baudoin Y, Habib MK (eds) Using robots in hazardous environments: Landmine detection, de-mining and other applications, chap. RAVON—the robust autonomous vehicle for off-road navigation. Woodhead Publishing, Cambridge

    Google Scholar 

  6. Armbrust C, Schäfer H, Berns K (2009) Using passages to support off-road robot navigation. In: Proc ICINCO 2009, INSTICC, Milan, Italy, pp 189–194

    Google Scholar 

  7. Balch T, Arkin R (1998) Behavior-based formation control for multirobot teams. IEEE Trans Robot Autom 14(6):926–939

    Article  Google Scholar 

  8. Baudoin Y, Habib MK (eds) (2010) Using robots in hazardous environments: Landmine detection, de-mining and other applications. Woodhead Publishing, Cambridge

    Google Scholar 

  9. Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: Speeded up robust features. Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  10. Billingsley J, Visala A, Dunn M (2008) Robotics in agriculture and forestry. In: Siciliano B, Khatib O (eds) Springer handbook of robotics, Chap 46. Springer, Berlin, pp 1065–1077

    Chapter  Google Scholar 

  11. Blas M, Agrawal M, Sundaresan A, Konolige K (2008) Fast color/texture segmentation for outdoor robots. In: Proc IEEE IROS 2008. IEEE Press, New York, pp 4078–4085.

    Google Scholar 

  12. Bonnafous D, Lacroix S, Siméon T (2001) Motion generation for a rover on rough terrain. In: Proc IEEE IROS 2001

    Google Scholar 

  13. Boots B (2008) Inferring depth from single images in natural scenes

  14. Bosse M, Newman P, Leonard J, Soika M, Feiten W, Teller S (2003) An atlas framework for scalable mapping. In: Proc IEEE ICRA 2003, vol 2, pp 1899–1906

    Google Scholar 

  15. Braun T (2009) Cost-efficient global robot navigation in rugged off-road terrain. RRLab dissertations. Verlag Dr. Hut

  16. Braun T, Schäfer H, Berns K (2009) Topological large-scale off-road navigation and exploration—RAVON at the European Land Robot Trial 2008. In: Proc IEEE IROS 2009. IEEE Press, St. Louis, pp 4387–4392

    Google Scholar 

  17. Brenneke C, Wulf O, Wagner B (2003) Using 3D laser range data for slam in outdoor environments. In: Proc IEEE IROS 2003, vol 1. IEEE Press, New York, pp 188–193

    Google Scholar 

  18. Brooks C, Iagnemma K (2005) Vibration-based terrain classification for planetary exploration rovers. IEEE Trans Robot 21(6):1185–1191

    Article  Google Scholar 

  19. Brooks R (1991) Intelligence without reason. Artificial intelligence: critical concepts 3

  20. Buttgen B, Seitz P (2008) Robust optical time-of-flight range imaging based on smart pixel structures. IEEE Trans Circuits Syst I, Regul Pap 55(6):1512–1525

    Article  MathSciNet  Google Scholar 

  21. Cariou C, Lenain R, Thuilot B, Berducat M (2009) Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. J Field Robot—Special Issue: Agricultural Robot 26(6–7):504–518

    Article  Google Scholar 

  22. Darabiha A, Rose J, MacLean W (2003) Video-rate stereo depth measurement on programmable hardware

  23. Debenest P, Fukushima EF, Hirose S (2003) Proposal for automation of humanitarian demining with buggy robots. In: Proc IEEE IROS 2003

    Google Scholar 

  24. Dupont E, Moore C, Collins E, Coyle E (2008) Frequency response method for terrain classification in autonomous ground vehicles. Auton Robots 24(4):337–347

    Article  Google Scholar 

  25. Eck D, Stahl M, Schilling K (2007) The small outdoor rover merlin and its assistance system for tele-operations. In: 6th int conf field and service robotics, Chamonix, France, pp 277–286

    Google Scholar 

  26. Egger A (1997) Regensensor. Europäisches Patent EP 0 856 44 B1

  27. Everson J, Kopala E, Lazofson L, Choe H, Pomerleau D (1995) Sensor performance and weather effects modeling for Intelligent Transportation Systems (ITS) applications. In: Proc of SPIE, vol 2344, p 118

    Chapter  Google Scholar 

  28. Ferguson D, Stentz A (2006) Using interpolation to improve path planning: The field d algorithm. J Field Robot 23(1):79–101

    Article  MATH  Google Scholar 

  29. Ferguson IA (1992) Touringmachines: autonomous agents with attitudes. IEEE Comput 25(5):51–55

    MathSciNet  Google Scholar 

  30. Forstmann S, Kanou Y, Ohya J, Thuering S, Schmitt A (2005) Real-time stereo by using dynamic programming. In: Computer vision and pattern recognition workshop, 2004. CVPRW’04. Conf. IEEE Press, New York, p 29

    Google Scholar 

  31. Frese U (ed) (2010) Simultaneous localization and mapping. KI – Künstliche Intelligenz, vol 24. Springer, Berlin

    Google Scholar 

  32. Gat E (1998) Three-layer architectures. In: Kortenkamp D, Bonasso R, Murphy R (eds) Artificial intelligence and mobile robots. AAAI Press/MIT Press, Melno Park, pp 195–210

    Google Scholar 

  33. Ghurchian R, Hashino S, Nakano E (2004) A fast forest road segmentation for real-time robot self-navigation. In: Proc IEEE IROS 2004

    Google Scholar 

  34. Gong M, Yang R (2005) Image-gradient-guided real-time stereo on graphics hardware. In: 5th int conf 3D digital imaging and modeling. IEEE Press, New York, pp 548–555

    Chapter  Google Scholar 

  35. Hadsell R, Sermanet P, Ben J, Erkan A, Han J, Flepp B, Muller U, LeCun Y (2007) Online learning for offroad robots: Using spatial label propagation to learn long-range traversability. In: Proc robotics: science and systems. CiteSeer

    Google Scholar 

  36. Halatci I, Brooks C, Iagnemma K (2007) Terrain classification and classifier fusion for planetary exploration rovers. In: IEEE Aerospace Conf 2007. IEEE Press, New York, pp 1–11

    Chapter  Google Scholar 

  37. Hautière N, Labayrade R, Aubert D (2005) Detection of visibility conditions through use of onboard cameras. In: Proc IEEE Intelligent Vehicles Symposium 2005. IEEE Press, New York, pp 193–198

    Chapter  Google Scholar 

  38. Hautière N, Labayrade R, Aubert D (2006) Estimation of the visibility distance by stereovision: a generic approach. IEICE Trans Inf Syst 89(7):2084

    Article  Google Scholar 

  39. Hellström T, Lärkeryd P, Nordfjell T, Ringdahl O (2009) Autonomous forest vehicles: Historic, envisioned, and state-of-the-art. Int J For Eng 20(1):31–38

    Google Scholar 

  40. Helmick DM, Cheng Y, Clouse DS, Bajracharya M, Matthies LH, Roumeliotis SI (2005) Slip compensation for a mars rover. In: Proc. IEEE IROS 2005, Edmonton, Alberta, Canada, pp 2806–2813

    Google Scholar 

  41. Hilbert K, Brunnett G (2005) A hybrid LOD based rendering approach for dynamic scenes. In: Computer graphics international, 2004 Proc. IEEE Press, New York, pp 274–277

    Google Scholar 

  42. Himmelsbach M, von Hundelshausen F, Lüttel T, Manz M, Müller A, Schneider S, Wünsche HJ (2009) Team mucar-3 at c-elrob 2009. Tech. rep. In: Proc of workshop on field robotics, civilian European robot trial 2009. Oulu, Finland. ISBN 978-951-42-9176-0

    Google Scholar 

  43. Hoiem D, Efros A, Hebert M (2005) Geometric context from a single image. In: IEEE int conf computer vision, vol 1. IEEE Press, New York, pp 654–661

    Google Scholar 

  44. Hong TH, Rasmussen C, Chang T, Shneier M (2002) Fusing ladar and color image information for mobile robot feature detection and tracking. In: Gini M, Shen WM, Torras C, Yuasa H (eds) 7th int conf intelligent autonomous systems. IOS Press, Amsterdam, pp 124–133

    Google Scholar 

  45. Horn J (2006) Zweidimensionale Geschwindigkeitsmessung texturierter Oberflächen mit flächenhaften bildgebenden Sensoren. Schriftenreihe. Institut für Mess-und Regelungstechnik, Universität Karlsruhe (TH); 6

  46. von Hundelshausen F, Himmelsbach M, Hecker F, Müller A, Wünsche HJ (2008) Driving with tentacles: Integral structures for sensing and motion. J Field Robot 25(9):640–673

    Article  MATH  Google Scholar 

  47. Iagnemma K, Brooks C, Dubowsky S (2004) Visual, tactile, and vibration-based terrain analysis for planetary rovers. In: Proc IEEE aerospace conf 2004, vol 2. IEEE Press, New York, pp 841–848

    Google Scholar 

  48. Iagnemma K, Dubowsky S (2002) Terrain estimation for high-speed rough-terrain autonomous vehicle navigation. In: Proc SPIE conf unmanned ground vehicle technology IV, vol 4715

    Google Scholar 

  49. Ingrand F, Lacroix S, Lemai-Chenevier S, Py F (2007) Decisional autonomy of planetary rovers. J Field Robot 24(7):559–580

    Article  Google Scholar 

  50. Kelly A, Stentz A (1998) Rough terrain autonomous mobility—part 2: An active vision, predictive control approach. In: Autonomous robots, vol 5, pp 163–198

    Google Scholar 

  51. Kim D, Sun J, Oh S, Rehg J, Bobick A (2006) Traversability classification using unsupervised on-line visual learning for outdoor robot navigation. In: Proc IEEE ICRA 2006. IEEE, New York, pp 518–525

    Google Scholar 

  52. Konolige K, Agrawal M, Blas MR, Bolles RC, Gerkey B, Solà J, Sundaresan A (2009) Mapping, navigation, and learning for off-road traversal. J Field Robot—Special Issue on LAGR Program, Part I 26(1):88–113

    MATH  Google Scholar 

  53. Kratz L, Nishino K (2010) Factorizing scene albedo and depth from a single foggy image. In: 12th IEEE int conf computer vision. IEEE Press, New York, pp 1701–1708

    Google Scholar 

  54. Krause T, Protzel P (2005) Einfaches Steuerungskonzept für mobile Roboter in dynamischen unstrukturierten Umgebungen. In: Autonome mobile systeme 2005

    Google Scholar 

  55. Krebs A, Risch F, Thueer T, Maye J, Pradalier C, Siegwart R (2010) Rover control based on an optimal torque distribution—application to 6 motorized wheels passive rover. In: Proc IEEE IROS 2010, Taipei, Taiwan, pp 4372–4377

    Google Scholar 

  56. Kuhnert KD (2008) Software architecture of the autonomous mobile outdoor robot AMOR. In: Proc IEEE intelligent vehicles symposium 2008. Eindhoven, The Netherlands, pp 889–894

    Chapter  Google Scholar 

  57. Kuhnert KD, Seemann W (2007) Design and realisation of the highly modular and robust autonomous mobile outdoor robot AMOR. In: Proc 13th IASTED int conf robotics and applications. ACTA Press, Würzburg, pp 464–469

    Google Scholar 

  58. Kuhnert L, Kuhnert KD (2011) Sensor-fusion based real-time 3D outdoor scene reconstruction and analysis on a moving mobile outdoor robot. Künstl Intell, doi:10.1007/s13218-011-0093-z

  59. Kurihata H, Takahashi T, Mekada Y, Ide I, Murase H, Tamatsu Y, Miyahara T (2006) Raindrop detection from in-vehicle video camera images for rainfall judgment. In: Int conf innovative computing, information and control 2006, vol 2. IEEE Press, New York, pp 544–547

    Google Scholar 

  60. Langer M, Zucker S (1994) Shape-from-shading on a cloudy day. J Opt Soc Am A 11(2):467–478

    Article  Google Scholar 

  61. Langerwisch M, Reimer M, Hentschel M, Wagner B (2010) Control of a semi-autonomous UGV using lossy low-bandwidth communication. In: Proc 2nd IFAC symposium on telematics applications. IFAC, Politehnica University, Timisoara, Romania. Invited paper

    Google Scholar 

  62. Lowe DG (2004) Distinctive image features from scale invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  63. Macedo J, Manduchi R, Matthies L (2001) Ladar-based discrimination of grass from obstacles for autonomous navigation. In: Experimental robotics VII, pp 111–120

    Chapter  Google Scholar 

  64. Marra M, Dunlay R, Mathis D (1989) Terrain classification using texture for the ALV. In: Mobile robots III, pp 64–70

    Google Scholar 

  65. Matarić MJ (1997) Behavior-based control: Examples from navigation, learning, and group behavior. J Exp Theor Artif Intell—Special Issue on Software Architectures for Physical Agents 9(2–3):323–336

    Google Scholar 

  66. Matarić MJ (2002) Situated robotics, invited contribution to the encyclopedia of cognitive science, Nature Publishing Group, Macmillan Reference Limited

  67. Montemerlo M, Thrun S (2004) A multi-resolution pyramid for outdoor robot terrain perception. In: Proc national conf artificial intelligence. AAAI Press/MIT Press, Menlo Park, Cambridge, pp 464–469

    Google Scholar 

  68. Mori K, Kato T, Takahashi T, Ide I, Murase H, Miyahara T, Tamatsu Y (2006) Visibility estimation in foggy conditions by in-vehicle camera and radar. In: Int conf innovative computing, information and control 2006, vol 2. IEEE Press, New York, pp 548–551

    Google Scholar 

  69. Müller J, Pischel M (1993) The agent architecture interrap: Concept and application. Tech. rep., DFKI Saarbrücken

  70. Murphy RR, Tadokoro S, Nardi D, Jacoff A, Fiorini P, Choset H, Erkmen AM (2008) Search and rescue robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1151–1173

    Chapter  Google Scholar 

  71. Narasimhan S, Nayar S (2003) Contrast restoration of weather degraded images. In: IEEE transactions on pattern analysis and machine intelligence, pp 713–724

    Google Scholar 

  72. Nedović V, Smeulders A, Redert A, Geusebroek J (2008) Depth estimation via stage classification. In: 3DTV conference: the true vision: capture, transmission and display of 3D video: 2008. IEEE Press, New York, pp 77–80

    Chapter  Google Scholar 

  73. Nguyen DV, Kuhnert L, Ax M, Kuhnert KD (2010) Combining distance and modulation information for detecting pedestrians in outdoor environment using a PMD camera. In: Proc 11th IASTED int conf computer graphics and imaging, vol 679, pp 020–163

    Google Scholar 

  74. Nüchter A (2009) 3D robotic mapping: the simultaneous localization and mapping problem with six degrees of freedom. Springer, Berlin

    MATH  Google Scholar 

  75. Pirjanian P (1999) Behaviour coordination mechanisms—state-of-the-art. Tech. rep. IRIS-99-375, Institute for robotics and intelligent systems, school of engineering, University of Southern California

  76. Poppinga J, Birk A, Pathak K (2008) Hough based terrain classification for realtime detection of drivable ground. J Field Robot 25(1–2):67–88

    Article  Google Scholar 

  77. Potetz B, Lee T (2003) Statistical correlations between two-dimensional images and three-dimensional structures in natural scenes. J Opt Soc Am A 20(7):1292–1303

    Article  Google Scholar 

  78. Proetzsch M (2010) Development process for complex behavior-based robot control systems. RRLab Dissertations. Verlag Dr. Hut

  79. Ranganathan A, Koenig S (2003) A reactive robot architecture with planning on demand. In: Proc IEEE IROS 2003, Las Vegas, Nevada, USA, pp 1462–1468

    Google Scholar 

  80. Rasmussen C, Lu Y, Kocamaz M (2009) Appearance contrast for fast, robust trail-following. In: Proc IEEE IROS 2009. IEEE Press, Piscataway, pp 3505–3512

    Google Scholar 

  81. Rovira-Más F, Han S, Wei J, Reid JF (2007) Autonomous guidance of a corn harvester using stereo vision. Agricultural Engineering International: the CIGR Ejournal IX

  82. Saxena A, Chung S, Ng A (2006) Learning depth from single monocular images. Adv Neural Inf Process Syst 18:1161–1168

    Google Scholar 

  83. Saxena A, Sun M, Ng A (2009) Make 3d: learning 3D scene structure from a single still image. IEEE Trans Pattern Anal Mach Intell 35(5):824–840

    Article  Google Scholar 

  84. Schäfer BH, Proetzsch M, Berns K (2007) Obstacle detection in mobile outdoor robots—a short-term memory for the mobile outdoor platform ravon. In: Proc. ICINCO 2007, Angers, France, pp 141–148

    Google Scholar 

  85. Schäfer H (2011) Control system design schemata and their application in off-road robotics. PhD thesis, University of Kaiserslautern. To be published

  86. Schäfer H, Hach A, Proetzsch M, Berns K (2008) 3D obstacle detection and avoidance in vegetated off-road terrain. In: Proc IEEE ICRA 2008, Pasadena, USA, pp 923–928

    Google Scholar 

  87. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Tech. rep. Available on http://vision.middlebury.edu/stereo/

  88. Schenker P, Huntsberger T, Pirjanian P, Dubowsky S, Iagnemma K, Sujan V (2003) Rovers for intelligent, agile traverse of challenging terrain. In: Int conf advanced robotics

    Google Scholar 

  89. Schmidt D, Proetzsch M, Berns K (2010) Simulation and control of an autonomous bucket excavator for landscaping tasks. In: Proc IEEE ICRA 2010, Anchorage, Alaska, USA, pp 5108–5113

    Google Scholar 

  90. Schneider FE, Röhling T, Brüggemann B, Wildermuth D (2010) CBRNE reconnaissance with an unmanned vehicle—a semi-autonomous approach. In: Proc 2nd IFAC symposium on telematics applications. IFAC, Politehnica University, Timisoara, Romania. Invited paper

    Google Scholar 

  91. Schneider FE, Wildermuth D, Brüggemann B, Röhling T (2010) European land robot trial (elrob), towards a realistic benchmark for outdoor robotics. In: Proc 1st international conference on robotics in education, RiE2010. FEI STU, Slovakia, pp 65–70

    Google Scholar 

  92. Schwarte R, Xu Z, Heinol H, Olk J, Klein R, Buxbaum B, Fischer H, Schulte J (1997) New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD). In: Proc of SPIE, vol 3100, p 245

    Chapter  Google Scholar 

  93. Schwendner J, Grimminger F, Bartsch S, Kaupisch T, Yüksel M, Bresser A, Akpo JB, Dieterle A, Schmidt S, Seydel M, Kirchner F (2009) CESAR: A lunar crater exploration and sample return robot. In: Proc IEEE IROS 2009, St. Louis, MO, United States of America, pp 3355–3360

    Google Scholar 

  94. Seemann W, Kuhnert K (2007) Localisation for an outdoor robot by optically measuring the ground movement. In: Proc 13th IASTED int conf robotics and applications. ACTA Press, Calgary, pp 113–118

    Google Scholar 

  95. Sermanet P, Hadsell R, Scoffier M, Grimes M, Ben J, Erkan A, Crudele C, Miller U, LeCun Y (2009) A multirange architecture for collision-free off-road robot navigation. J Field Robot—Special Issue on LAGR Program, Part I 26(1):52–87

    MATH  Google Scholar 

  96. Stentz A, Hebert M (1995) A complete navigation system for goal acquisition in unknown environments. In: Proc IEEE IROS 1995, vol 1, pp 425–432

    Google Scholar 

  97. Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G et al. (2007) Stanley: The robot that won the DARPA Grand Challenge. In: The 2005 DARPA Grand Challenge, pp 1–43

    Chapter  Google Scholar 

  98. Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G, Lau K, Oakley C, Palatucci M, Pratt V (2006) Pasc: Stanley: The robot that won the darpa grand challenge. J Field Robot 23(9):661–692

    Article  Google Scholar 

  99. Torralba A, Oliva A (2002) Depth estimation from image structure. IEEE Trans Pattern Anal Mach Intell 24(9):1226–1238

    Article  Google Scholar 

  100. Urmson C, Ragusa C, Ray D, Anhalt J, Bartz D, Galatali T, Gutierrez A, Johnston J, Harbaugh S, Kato HY, Messner W, Miller N, Peterson K, Smith B, Snider J, Spiker S, Ziglar J, Whittaker WR, Clark M, Koon P, Mosher A, Struble J (2006) A robust approach to high-speed navigation for unrehearsed desert terrain. J Field Robot 23(8):467–508

    Article  MATH  Google Scholar 

  101. Vandapel N, Huber D, Kapuria A, Hebert M (2004) Natural terrain classification using 3-d ladar data. In: Proc IEEE ICRA 2004, vol 5. IEEE, New York, pp 5117–5122

    Google Scholar 

  102. Wang L, Liao M, Gong M, Yang R, Nister D (2006) High-quality real-time stereo using adaptive cost aggregation and dynamic programming

  103. Wellington C, Stentz A (2004) Online adaptive rough-terrain navigation in vegetation. In: Proc IEEE ICRA 2004, vol 1, pp 96–101

    Google Scholar 

  104. Wooden D, Powers M, MacKenzie D, Balch T, Egerstedt M (2007) Control-driven mapping and planning. In: Proc IEEE IROS 2007. San Diego, CA, USA, pp 3056–3061

    Google Scholar 

  105. Wulf O, Wagner B (2003) Fast 3D scanning methods for laser measurement systems. In: 14th int conf control systems and computer science, Bucharest

    Google Scholar 

  106. Yang Q, Wang L, Yang R, Wang S, Liao M, Nister D (2006) Real-time global stereo matching using hierarchical belief propagation. In: The British machine vision conference, pp 989–998

    Google Scholar 

  107. Zhang Y, Schervish M, Acar EU, Choset H (2001) Probabilistic methods for robotic landmine search. In: Proc IEEE IROS 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Armbrust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berns, K., Kuhnert, KD. & Armbrust, C. Off-road Robotics—An Overview. Künstl Intell 25, 109–116 (2011). https://doi.org/10.1007/s13218-011-0100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-011-0100-4

Keywords

Navigation