Skip to main content
Log in

Improvement of Lactobacillus brevis NM101-1 grown on sugarcane molasses for mannitol, lactic and acetic acid production

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The conversion of sugarcane molasses for the production of lactic acid, acetic acid, and mannitol was enhanced by subjecting Lactobacillus brevis NM101-1 wild strain to various doses of gamma irradiation. Four mutants (LM-1-LM-4) obtained at gamma ray doses of 30, 60, 90, and 120 Gy produced higher levels of lactic acid, acetic acid, and mannitol than the wild-type. Among all the mutants tested, LM-3 strain showed the highest mannitol and acetic acid production which reached 198.95 and 96.86 g/l, respectively. On the other hand, mutant LM-1strain exhibited the best performance with respect to lactic acid production (143.73 g/l). Random amplified polymorphic DNA polymerase chain reaction technique (RAPD-PCR) using three primers (RP, R5, and M13) was used in order to detect the variation in DNA profile in response to gamma irradiation treatments. RAPD analysis indicated the appearance and disappearance of DNA polymorphic bands at different gamma ray doses. The results showed the potential of these mutants to be potential candidates for economical production of mannitol, lactic and acetic acids from molasses on a commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301

    Article  CAS  Google Scholar 

  • Allan R, Greenwood T (2001) Advanced Biology 1: Student Resource and Activity Manual. Biozone, New Zealand, pp 126–158

    Google Scholar 

  • AOAC (1997) Official Methods of Analysis, 16th edn. AOAC international, Gaithersburg

    Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102

    Article  CAS  PubMed  Google Scholar 

  • Benthin S, Villadsen J (1995) Production of optically pure D-lactate by Lactobacillus bulgaricus and purification by crystallization and liquid/liquid extraction. Appl Microbiol Biotechnol 42:426–9

    Google Scholar 

  • Calabia BP, Tokiwa Y (2007) Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29:1329–1332

    Article  CAS  PubMed  Google Scholar 

  • Campoccia D, Montanaro L, Baldassarri L, An YH, Arciola CR (2005) Antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis clinical isolates from implant orthopedic infections. Int J Artif Organs 28:1186–1191

    CAS  PubMed  Google Scholar 

  • Casella IG, Gatta M (2002) Determination of aliphatic organic acids by high-performance liquid chromatography with pulsed electrochemical detection. J Agric Food Chem 50:23–28

    Article  CAS  PubMed  Google Scholar 

  • Chauhan MK, Chaudhary VS, Samar SK (2011) Life cycle assessment of sugar industry: a review. Renew Sust Energ Rev 15(7):3445–3453

    Article  Google Scholar 

  • Dal Bello F, Hertel C (2006) Oral cavity as natural reservoir for intestinal lactobacilli. Syst Appl Microbiol 29:69–76

    Article  CAS  PubMed  Google Scholar 

  • Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74:333–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher K, Bipp HP (2005) Generation of organic acids and monosaccharides by hydrolytic and oxidative transformations of food processing residues. Bioresour Technol 96:831–842

    Article  Google Scholar 

  • Harlander SK (1992) Genetic Improvement of Microbial Starter Culture. In: Application of Biotechnology to Traditional Fermented Foods. Report of an Ad-Hoc Panel of the Board on Science and Technology for International Development. National Academic Press, Washington D.C, pp 20–26

    Google Scholar 

  • Hegazi AZ, Hamideldin N (2010) The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes. J Hortic For 2(3):38–51

    Google Scholar 

  • Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107

    Article  CAS  PubMed  Google Scholar 

  • Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli minisatellite probe from bacteriophage M13. J Bacteriol 171:2528–2532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iftikhar T, Niaz M, Hussain Y, Abbas SQ, Ashraf I, Zia MA (2010) Improvement of selected strains through gamma irradiation for enhanced lipolytic potential. Pak J Bot 42(4):2257–2267

    Google Scholar 

  • Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M (2007) Efficient production of l-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73:117–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • John RP, Nampoothiri KM (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Kortenkamp A (2000) RAPD library fingerprinting of bacterial and human DNA: applications in mutation detection. Teratog Carcinog Mutagen 20(2):49–63

    Article  CAS  PubMed  Google Scholar 

  • Kadam SR, Patil SS, Bastawade KB, Khire JM, Gokhale DV (2006) Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochem 41:120–126

    Article  CAS  Google Scholar 

  • Kropinski AM (1975) Stability of bacterial mutants in saline. Appl Microbiol 29(4):448–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruscal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Kwon S, Lee PC, Lee EG, Chang YK, Chang N (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme Microb Technol 26:209–215

    Article  CAS  PubMed  Google Scholar 

  • Li BW, Andrewsw KW, Pehrssonw PR (2002) Individual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods. J Food Compos Anal 15:715–723

    Article  CAS  Google Scholar 

  • Lopez HW, Duclos V, Coudray C, Krespine V, Feillet-Coudray C, Messager A, Demigné C, Rémésy C (2003) Making bread with sourdough improves mineral bioavailability from reconstituted whole wheat flour in rats. Nutrition 19:524–530

    Article  CAS  PubMed  Google Scholar 

  • Najafpour GD, Shan CP (2004) Enzymatic hydrolysis of molasses. Bioresour Technol 86:91–94

    Article  Google Scholar 

  • Patil SS, Kadam SR, Patil SS, Bastawde KB, Khire JM, Gokhale DV (2006) Production of lactic acid and fructose from media with cane sugar using mutant of Lactobacillus delbrueckii NCIM 2365. Lett Appl Microbiol 43:53–57

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LR, Teixeira JA, Oliveira R (2006) Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J 32:135–142

    Article  CAS  Google Scholar 

  • Rushdy AA, Gomaa EZ (2012) Antimicrobial compounds produced by probiotic Lactobacillus brevis isolated from dairy products. Ann Microbiol. doi:10.1007/s13213-012-0447-2

  • Saha BC (2003) Production of mannitol by fermentation. In: Saha BC (ed) Fermentation biotechnology. American Chemical Society, Washington, DC, pp 67–85

    Chapter  Google Scholar 

  • Saha BC, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B- 3693. Biotechnol Bioeng 82:864–871

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Racine FM (2011) Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 89:879–891

    Article  CAS  PubMed  Google Scholar 

  • Schillinger U, Yousif NMK, Sesar L, Franz CMAP (2003) Use of group specific and RAPDPCR analyses for rapid differentiation of Lactobacillus strains from probiotic yogurts. Curr Microbiol 47:453–456

    CAS  PubMed  Google Scholar 

  • Sieladie DV, Zambou NF, Kaktcham PM, Cresci A, Fonteh F (2011) Probiotic properties of Lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon. Innov Rom Food Biotechnol 9:12–28

    CAS  Google Scholar 

  • Tashiro Y, Kaneko W, Sun Y, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp lactis QU 41. Appl Microbiol Biotechnol 89:1741–1750

    Article  CAS  PubMed  Google Scholar 

  • Torriani S, Zapparoli G, Dellaglio F (1999) Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. Bulgaricus and L. delbrueckii subsp. Lactis. Appl Environ Microbiol 65:4351–4356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel RF, Knorr R, Müller MRA, Steudel U, Gänzle MG, Ehrmann MA (1999) Non-dairy lactic fermentations: the cereal world. Antonie Van Leeuwenhoek 76:403–411

    Article  CAS  PubMed  Google Scholar 

  • Wee YJ, Kim JN, Yun JS, Ryu HW (2004) Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme Microb Technol 35:568–573

    Article  CAS  Google Scholar 

  • Yoo IK, Cheng NN, Lee EG, Cheng YK, Moon SH (1997) Effect of B vitamin supplementation on lactic acid production by Lactobacillus casei. J Ferment Bioeng 84:172–175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Zakaria Gomaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomaa, E.Z., Rushdy, A.A. Improvement of Lactobacillus brevis NM101-1 grown on sugarcane molasses for mannitol, lactic and acetic acid production. Ann Microbiol 64, 983–990 (2014). https://doi.org/10.1007/s13213-013-0733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0733-7

Keywords

Navigation