Skip to main content

Advertisement

Log in

Expression of modified xynA gene fragments from Bacillus subtilis BE-91

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Expression of modified xynA gene fragments in Escherichia coli BL21 was studied, using the complete xynA gene from Bacillus subtilis BE-91 as the positive control. The technical workflow consisted of the following steps: (1) predicting protein structures relative to the xynA gene; (2) designing primers for modifiers; (3) amplifying the modifiers; (4) integrating the modifiers with the pET-28a(+) vector; (5) transferring the recombinant plasmids into E. coli BL21; (6) evaluating and analyzing the expression of modified cells. The results were: (1) the xynA gene from BE-91 with the untranslated region deleted on both ends was able to promote XynA activity by 28.9 %; (2) deletion of the 1- to 16-amino acid (AA) coding sequence in the open reading frame on the 5′-end, deletion of the 209- to 213-AA fragment on the 3′-end and deletion of the 20 AA on both ends could promote XynA activity by 27.2, 27.7 and 24.0 %,respectively; (3) deletion of the 1- to 29-AA fragment on the 5′-end and deletion of the 197- to 213-AA fragment on the 3′-end could reduce XynA activity dramatically by 95.6 and 74.8 %, respectively; (4) inactivation factors of XynA would be either the first β-fold and the hydrophilic structure domain or the last two α-screws and the seventeenth turn region. The results mean that any deletion in the catalytic domain would lead to a decline or inactivation in XynA activity while the deletion of any sequence outside the catalytic domain could effectively promote XynA activity, as such sequences are unnecessary for XynA function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali MK, Fukumura M, Sakano K, Karita S, Kimura T, Sakka K, Ohmiya K (1999) Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci Biotechnol Biochem 63:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Bao YH, Liu WF, Dong ZY (2008) Studies on the over-expression of alkali-tolerant xylanase in Bacillus Pumilus. J Chin Inst Food Sci Technol 8:37–43

    CAS  Google Scholar 

  • Bernier R, Driguez H, Desrochers M (1983) Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli. Gene 26:59–65

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Westpheling J (1998) Partial characterization of the Streptomyces lividans xlnB promoter and its use for expression of a thermostable xylanase from Thermotoga maritima. Appl Environ Microbiol 64:4217–4225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deuerling E, Paeslack B, Schumann W (1995) The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshift. J Bacteriol 177:4105–4112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dwivedi PP, Gibbs MD, Saul DJ, Bergquist PL (1996) Cloning, sequencing and over expressionin Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol 45:86–93

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LM, Durrant AJ, Hall J, Hazlewoodt GP, Gilbert HJ (1990) Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem J 269:261–264

    CAS  PubMed  Google Scholar 

  • Grange DC, Pretorius IS, Zyl WH (1996) Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    PubMed Central  PubMed  Google Scholar 

  • Grepinet O, Chebrou MC, Beguin P (1988) Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J Bacteriol 170:4582–4588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo G, Liu ZC, Xu JF, Liu JP, Dai XY, Xie DP, Peng KQ, Feng XY, Duan SW, Zheng K, Cheng LF, Fu YG (2011) Purification and characterization of a xylanase from Bacillus subtilis isolated from the degumming line. J Basic Microb 51:1–10

    Article  Google Scholar 

  • Jialin S, Tetsu K, Tetsuya K, Shuichi K, Kazuo S, Kunio O (1997) High expression of the xylanase B gene from Clostridium stercorarium in tobacco cell. J Ferment Bioeng 84:219–223

    Article  Google Scholar 

  • Kakar S, Burgart LJ, Thibodeau SN, Rabe KG, Petersen GM, Goldberg RM, Lindor NM (2003) Frequency of loss of hMLH1 expression in colorectal carcinoma increases with advancing age. Cancer 97:1421–1427

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Lowe SE, Henrissat B, Zeikusl JG (1993) Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium. J Bacteriol 175:5890–5898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu ZC (2007) Review and prospect of researches of microorganism engineering for bast fibers extracting. Sci Agric Sin 40(supplement):363–367

    Google Scholar 

  • Liu ZC, Dai XY, Zhang JZ, Xu JF, Duan SW, Zheng K, Feng XY, Cheng LF, Shi J (2011) Screening of a xylanase high-producing strain and its rapid separation and purification. Ann Microbiol 61:901–906

    Article  CAS  Google Scholar 

  • Mach-Aigner AR, Pucher ME, Mach RL (2010) D-Xylose as a repressor or inducer of xylanase expression in Hypocreajecorina (Trichodermareesei). Appl Environ Microbiol 76:1770–1776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto K, Satoh T, Irie A, Ishii J, Kuwao S, Iwamura M, Baba S (2008) Loss expression of uroplakin III is associated with clinicopathologic features of aggressive bladder cancer. Urology 72:444–449

    Article  PubMed  Google Scholar 

  • Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez S, Santamaría RI, Fernández-Ábalos JM, Díaz M (2005) Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. Gene 351:1–9

    Article  PubMed  Google Scholar 

  • Shin HD, McClendon S, Vo T, Chen RR (2010) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol 76:8150–8159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stec-Michalska K, Antoszczyk S, Klupinska G, Nawrot B (2005) Loss of FHIT expression in gastric mucosa of patients with family histories of gastric cancer and Helicobacter pylori infection. World J Gastroenterol 11:17–21

    CAS  PubMed  Google Scholar 

  • Tanjore H, Kalluri R, Ikeda K, Ishikawa N, Egami H, Nakao M, Sado Y, Ninomiya Y, Baba H (2006) Loss of expression of type IV collagen α5 and α6 chains in colorectal cancer associated with the hypermethylation of their promoter region. Am J Pathol 168(715–717):856–865

    Google Scholar 

  • Waldeck J, Meyer-Rammes H, Wieland S, Feesche J, Maurer KH, Meinhardt F (2007) Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. J Biotechnol 130:124–132

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang TH (2002) Cloning and sequence analysis of xylanase I gene from Trichoderma reesei and its expression in Saccharomyces cerevisiae. J Shandong Inst Light Ind (Nat Sci Ed) 3:13–16

    CAS  Google Scholar 

  • Wang XS, Liu ZC, Li B, Feng XY, Duan SW, Zheng K, Cheng LF (2009) Study on the construction of special compound enzyme engineering strain for bio-extracting herbaceous fiber. J Anhui Agric Sci 37:3928–3930

    CAS  Google Scholar 

  • Yang RCA, Mackenzie CR, Bilous D, Narang SA (1989) Hyperexpression of a Bacillus circulans xylanase gene in Escherichia coli and characterization of the gene product. Appl Environ Microbiol 55:1192–1195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YX, Liu ZC, Chen XB (2007) Cloning and expression of a mannanase gene from Erwinia carotovora CXJZ95-198. Ann Microbiol 57:623–628

    Article  CAS  Google Scholar 

  • Zheng RJ (2006) Homologous expression and characterization of the xylanase from Aspergillus niger. M.Sc thesis. Tongji University, Shanghai

Download references

Acknowledgments

The present work was supported by a grant from the National Project for High-technology Research (2006AA02Z249) and also funded by China Agriculture Research System (CARS-19-E24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengchu Liu.

Additional information

Z. Liu and J. Xu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Xu, J., Duan, S. et al. Expression of modified xynA gene fragments from Bacillus subtilis BE-91. Ann Microbiol 64, 139–145 (2014). https://doi.org/10.1007/s13213-013-0642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0642-9

Keywords

Navigation