Skip to main content
Log in

Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Auxin production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase of rhizobacteria are very important plant growth promoting attributes. In the present study, Pseudomonas strains exhibiting these traits were evaluated for their growth promoting effects on Vigna mungo (L.). Colorimetric analysis revealed that Pseudomonas alcaliphila AvR-2, Pseudomonas sp. AvH-4 and Pseudomonas aeruginosa As-17, respectively, produced 40.30, 32.90 and 36.50 μg auxin ml−1 in the presence of 6% of glucose, sucrose and fructose. Similarly, Pseudomonas sp. AvH-4 expressed highest ACC-deaminase activity (355 nmol h−1) as compared to P. alcaliphila AvR-2 (115 nmol h−1) and P. aeruginosa As-17 (197 nmol h−1). Antibiotic sensitivity pattern of rhizobacteria also showed resistance against oxytetracyclin, erythromycin and penicillin. Inoculation of V. mungo with rhizobacteria positive for auxin production and ACC-deaminase activity enhanced plant growth in pot trials. In laboratory experiments (under axenic conditions), P. aeruginosa As-17 was the most effective at enhancing shoot length (70.90%), seedling fresh weight (185.70%) and root length (84.20%). Pot trials conducted under natural environmental conditions showed up to 45.60, 54.10 and 72.50% increases in shoot length, root length and number of pods, respectively, over control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009a) Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J Microbiol Biotechnol 25:519–526

    Article  CAS  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009b) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  PubMed  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    PubMed  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual. Pearson, Signapore

  • Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603

    PubMed  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    PubMed  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  PubMed  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Holden N, Pritchard L, Toth I (2009) Colonization outwith the colon: plants as an alternate environment reservoir for human pathogenic enterobacteria. FEMS Microbiol Rev 33:689–703

    Article  PubMed  CAS  Google Scholar 

  • Ji P, Wilson M (2002) Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. Appl Environ Microbiol 68:4383–4389

    Article  PubMed  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophan in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microb Int 19:250–256

    Article  CAS  Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    Article  CAS  Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum Biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Micrbiol 69:4396–4402

    Article  CAS  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Nagatsu T, Yagi K (1966) A simple assay of monoamine oxidase and D-amino acid oxidase by measuring ammonia. J Biochem 60:219–221

    PubMed  CAS  Google Scholar 

  • Ona O, Impe JV, Prinsen E, Vnaderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp 245 is environmentally controlled. FEMS Microbiol Lett 246:125–132

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Plant Physiol 118:10–15

    Article  CAS  Google Scholar 

  • Raddadi N, Cherif A, Boudabous A, Daffonchio D (2008) Screening of plant growth promoting traits of Bacillus thuringiensis. Ann Microbiol 58:47–52

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Shahroona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Tang WY, Borner J (1979) Enzymes involved in synthesis and breakdown of indoleacetic acid. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol. 7. Springer, Heidelberg, pp 238–241

    Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basharat Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noreen, S., Ali, B. & Hasnain, S. Growth promotion of Vigna mungo (L.) by Pseudomonas spp. exhibiting auxin production and ACC-deaminase activity. Ann Microbiol 62, 411–417 (2012). https://doi.org/10.1007/s13213-011-0277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0277-7

Keywords

Navigation