Skip to main content
Log in

Bacillus subtilis fadB (ysiB) gene encodes an enoyl-CoA hydratase

  • Short Communication
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Fatty acids are essential components of membranes and are an important source of metabolic energy. In bacteria, the β-oxidation pathway is well known in Escherichia coli. Bacillus subtilis possesses a considerable number of genes, organized in five operons, that are most likely involved in the β-oxidation of fatty acids. Among these genes, only one product, FadRBs (YsiA), has been recently characterized as a transcriptional regulatory protein which negatively regulates the expression of β-oxidation genes including those belonging to the lcfA operon, including fadR Bs (ysiA). The probable involvement of the FadRBs (YsiA) regulon members in β-oxidation is inferred from data based on BLASTP similarity of their gene products. In this work, we report the cloning and the expression of B. subtilis fadB Bs(ysiB), belonging to the lcfA operon, and the functional characterization of its product as an enoyl-CoA hydratase, demonstrating the actual involvement of these genes in fatty acid β-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Angnihotri, Hung-wen Liu (2003) Enoyl-CoA hydratase: reaction and mechanism, and inhibition. Bioorganic Med Chem 11:9–20

    Article  Google Scholar 

  • Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409

    Article  PubMed  CAS  Google Scholar 

  • Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriology 189(1):228–235

    Article  CAS  Google Scholar 

  • Binstock JF, Schulz H (1981) Fatty acids oxidation complex from Escherichia coli. Methods Enzymol 71(C):403–411

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteyn-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bryan EM, Beall BW, Moran CP Jr (1996) A sigma E-dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. J Bacteriol 178:4778–4786

    Google Scholar 

  • Campbell JW, Cronan JE Jr (2001a) Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J Bacteriol 183:5982–5990

    Article  CAS  Google Scholar 

  • Campbell JW, Cronan JE Jr (2001b) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 55:305–332

    Article  CAS  Google Scholar 

  • Cronan JE Jr, Rock CO (1996) Biosynthesis of membrane lipids. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B et al (eds) Escherichia coli and Salmonella typhimurium Celluar and Molecular Biology. American Society for Microbiology Press, Washington, DC, pp 612–636

    Google Scholar 

  • DiRusso CC (1990) Primary sequence of the Escherichia coli fadBA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes. J Bacteriol 172(11):6459–6468

    Google Scholar 

  • Fong JC, Schulz H (1977) Purification and properties of pig heart crotonase and the presence of short chain enoyl-CoA hydratases in pig and in guinea pig tissues. J Biol Chem 252(2):542–547

    PubMed  CAS  Google Scholar 

  • Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66(4):829–839

    Article  PubMed  CAS  Google Scholar 

  • González-Pastor JE, Hobbs EC, Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510–513

    Article  PubMed  Google Scholar 

  • Hartmanis MGN, Gatenbeck S (1984) Intermediary Metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47(6):1277–1283

    PubMed  CAS  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77(6):1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Jiang LL, Kobayashi A, Matsuura H, Fukushima H, Hashimoto T (1996) Purification and properties of human D-3-hydroxyacyl-CoA dehydratase: medium chain enoyl-CoA hydratase is D-3-hydroxyacyl-CoA dehydratase. J Biochem 120(3):624–632

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka H, Hirooka K, Fujita Y (2007) Organization and function of the YsiA regulon in Bacillus subtilis involved in fatty acids Degradation. J Biol Chem 282(8):5180–5194

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Christopher T, Nomura CT, Hideki Abe H, Doi Y, Tsuge T (2007) Poly[(R)-3-hydroxybutyrate] formation in Escherichia coli from glucose through an enoyl-CoA hydratase-mediated pathway. J Biosci Bioeng 103(1):38–44

    Article  PubMed  CAS  Google Scholar 

  • Tamao H, Tsuge T, Fukui T, Iwata T, Miki K, Doi Y (2003) Crystal Structure of the (R)-Specific Enoyl-CoA Hydratase from Aeromonas caviae Involved in Polyhydroxyalkanoate Biosynthesis. J Biol Chem 278(1):617–624

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunella Perito.

Additional information

Antonio Frandi, Paolo Zucca and Massimiliano Marvasi contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frandi, A., Zucca, P., Marvasi, M. et al. Bacillus subtilis fadB (ysiB) gene encodes an enoyl-CoA hydratase. Ann Microbiol 61, 371–374 (2011). https://doi.org/10.1007/s13213-010-0121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0121-5

Keywords

Navigation