Skip to main content
Log in

Zinc-Finger-Protein-Based Microfluidic Electrophoretic Mobility Reversal Assay for Quantitative Double-Stranded DNA Analysis

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

We report for the first time a microfluidic electrophoretic mobility reversal assay (MEMRA) for double-stranded DNA (dsDNA) detection using zinc-finger proteins (ZFPs) and a polyacrylamide-gel (PAG) sieving matrix. Microfluidic DNA analysis was actively studied because of its importance in biology and medicine. Most microfluidic DNA detection techniques rely on time-consuming denaturation and hybridization processes. To address this limitation, ZFP was employed as a novel affinity probe, which directly binds to a specific sequence of dsDNA without denaturation and renaturation. A mildly alkaline electrophoresis buffer (pH 8.6) was used for our MEMRA, instead of a strongly alkaline buffer (pH 10.75) for separating the ZFP–dsDNA complex from interfering species. At pH 8.6, the mobility of ZFP was reversed upon binding with dsDNA (complex pI =  ~ 5.33), and unbound ZFP (pI =  ~ 9.3) was excluded from loading. Therefore, the ZFP–dsDNA complex was detected without zone interferences. Furthermore, nonspecific interactions and band dispersion, observed in strongly alkaline buffer, were effectively mitigated in the MEMRA. The ZFP–dsDNA complex was fully separated (separation resolution ≥ 2.0) and detected rapidly (12–15 s at a separation distance of 160–240 μm) using on-chip photopatterned 3–16%T discontinuous PAG. The MEMRA performance was excellent, providing a detection limit of 50 pM and a detection range of 100 pM–500 nM for seb (Staphylococcus enterotoxin B) gene dsDNA oligonucleotides. We expect that our ZFP-based MEMRA will find broad utility in biology and medicine where the rapid, specific, and quantitative detection of dsDNA is of paramount importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pan, Y., Karns, K., Herr, A.E.: Microfluidic electrophoretic mobility shift assays for quantitative biochemical analysis. Electrophoresis 35, 2078–2090 (2014)

    CAS  PubMed  Google Scholar 

  2. Hou, C., Herr, A.E.: Clinically relevant advances in on-chip affinity-based electrophoresis and electrochromatography. Electrophoresis 29, 3306–3319 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Schmalzing, D., Nashabeh, W.: Capillary electrophoresis based immunoassays: a critical review. Electrophoresis 18, 2184–2193 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. He, X., Ding, Y., Li, D., Lin, B.: Recent advances in the study of biomolecular interactions by capillary electrophoresis. Electrophoresis 25, 697–711 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Schou, C., Heegaard, N.H.: Recent applications of affinity interactions in capillary electrophoresis. Electrophoresis 27, 44–59 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Dey, B., Thukral, S., Krishnan, S., Chakrobarty, M., Gupta, S., Manghani, C., Rani, V.: DNA–protein interactions: methods for detection and analysis. Mol. Cell. Biochem. 365, 279–299 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. Hou, C., Herr, A.E.: Ultrashort separation length homogeneous electrophoretic immunoassays using on-chip discontinuous polyacrylamide gels. Anal. Chem. 82, 3343–3351 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, S.B., Skinner, C.D., Taylor, J., Attiya, S., Lee, W.E., Picelli, G., Harrison, D.J.: Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal. Chem. 73, 1472–1479 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Bromberg, A., Mathies, R.A.: Multichannel homogeneous immunoassay for detection of 2, 4, 6-trinitrotoluene (TNT) using a microfabricated capillary array electrophoresis chip. Electrophoresis 25, 1895–1900 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Kuswandi, B., Nuriman, H.J., Verboom, W.: Optical sensing systems for microfluidic devices: a review. Anal. Chim. Acta 601, 141–155 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Schultz, N.M., Kennedy, R.T.: Rapid immunoassays using capillary electrophoresis with fluorescence detection. Anal. Chem. 65, 3161–3165 (1993)

    Article  CAS  Google Scholar 

  12. Shimura, K., Karger, B.L.: Affinity probe capillary electrophoresis: analysis of recombinant human growth hormone with a fluorescent labeled antibody fragment. Anal. Chem. 66, 9–15 (1994)

    Article  CAS  PubMed  Google Scholar 

  13. Koutny, L.B., Schmalzing, D., Taylor, T.A., Fuchs, M.: Microchip electrophoretic immunoassay for serum cortisol. Anal. Chem. 68, 18–22 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Chiem, N., Harrison, D.J.: Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal. Chem. 69, 373–378 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Chiem, N.H., Harrison, D.J.: Monoclonal antibody binding affinity determined by microchip-based capillary electrophoresis. Electrophoresis 19, 3040–3044 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. Karns, K., Herr, A.E.: Human tear protein analysis enabled by an alkaline microfluidic homogeneous immunoassay. Anal. Chem. 83, 8115–8122 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. Schmalzing, D., Koutny, L.B., Taylor, T.A., Nashabeh, W., Fuchs, M.: Immunoassay for thyroxine (T4) in serum using capillary electrophoresis and micromachined devices. J. Chromatogr. B Biomed. Sci. Appl. 697, 175–180 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Herr, A.E., Throckmorton, D.J., Davenport, A.A., Singh, A.K.: On-chip native gel electrophoresis-based immunoassays for tetanus antibody and toxin. Anal. Chem. 77, 585–590 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Clark, J., Shevchuk, T., Swiderski, P.M., Dabur, R., Crocitto, L.E., Buryanov, Y.I., Smith, S.S.: Mobility-shift analysis with microfluidics chips. Biotechniques 35, 548–555 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Xian, J., Harrington, M.G., Davidson, E.H.: DNA-protein binding assays from a single sea urchin egg: a high-sensitivity capillary electrophoresis method. Proc. Natl. Acad. Sci. USA 93, 86–90 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Foulds, G.J., Etzkorn, F.A.: A capillary electrophoresis mobility shift assay for protein—DNA binding affinities free in solution. Nucleic Acids Res. 26, 4304–4305 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, J., Easley, C.J.: A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis. Analyst 136, 3461–3468 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Huber, D.E., Markel, M.L., Pennathur, S., Patel, K.D.: Oligonucleotide hybridization and free-solution electrokinetic separation in a nanofluidic device. Lab Chip 9, 2933–2940 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. Liu, P., Mathies, R.A.: Integrated microfluidic systems for high-performance genetic analysis. Trends Biotechnol. 27, 572–581 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. Gorgannezhad, L., Stratton, H., Nguyen, N.-T.: Microfluidic-based nucleic acid amplification systems in microbiology. Micromachines 10, 408 (2019)

    Article  PubMed Central  Google Scholar 

  26. Bae, S., Son, K., Lee, D., Han, S., Choi, K., Kim, S.: Warfarin pharmacogenetics: single-nucleotide polymorphism detection using CMOS photosensor-based real-time PCR. Biochip J. 14, 204–210 (2020)

    Article  CAS  Google Scholar 

  27. Bruijns, B., Van Asten, A., Tiggelaar, R., Gardeniers, H.: Microfluidic devices for forensic DNA analysis: a review. Biosensors 6, 41 (2016)

    Article  PubMed Central  Google Scholar 

  28. Hardenbol, P., Banér, J., Jain, M., Nilsson, M., Namsaraev, E.A., Karlin-Neumann, G.A., Fakhrai-Rad, H., Ronaghi, M., Willis, T.D., Landegren, U., Davis, R.W.: Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21, 673–678 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Chen, D., Shen, X., Xu, Y., Cai, B., Ding, C., Zhong, Y., Xu, Y., Zhou, C.: Next-generation sequencing-based preimplantation genetic testing for de novo NF1 mutations. Biochip J. 15, 69–76 (2021)

    Article  CAS  Google Scholar 

  30. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  CAS  PubMed  Google Scholar 

  31. Lu, Y., Chen, S., Wei, L., Sun, L., Liu, H., Xu, Y.: A microfluidic-based SNP genotyping method for hereditary hearing-loss detection. Anal. Chem. 91, 6111–6117 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. Mothershed, E.A., Whitney, A.M.: Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin. Chim. Acta 363, 206–220 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Paillard, F., Hill, C.S.: Direct nucleic acid diagnostic tests for bacterial infectious diseases: streptococcal pharyngitis, pulmonary tuberculosis, vaginitis, chlamydial and gonococcal infections. MLO Med. Lab. Obs. 36, 10–15 (2004). (quiz 16)

    PubMed  Google Scholar 

  34. Na, H., Kang, B.-H., Ku, J., Kim, Y., Jeong, K.-H.: On-chip paper electrophoresis for ultrafast screening of infectious diseases. Biochip J. 15, 305–311 (2021)

    Article  CAS  Google Scholar 

  35. Kim, J.H., Kang, M., Park, E., Chung, D.R., Kim, J., Hwang, E.S.: A simple and multiplex loop-mediated isothermal amplification (LAMP) assay for rapid detection of SARS-CoV. Biochip J. 13, 341–351 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D.: An integrated nanoliter DNA analysis device. Science 282, 484–487 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. Niemz, A., Ferguson, T.M., Boyle, D.S.: Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vahedi, G., Kaler, K., Backhouse, C.J.: An integrated method for mutation detection using on-chip sample preparation, single-stranded conformation polymorphism, and heteroduplex analysis. Electrophoresis 25, 2346–2356 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. Kim, M.-S., Stybayeva, G., Lee, J.Y., Revzin, A., Segal, D.J.: A zinc finger protein array for the visual detection of specific DNA sequences for diagnostic applications. Nucleic Acids Res. 39, gkq1214 (2010)

    Google Scholar 

  40. Ghosh, I., Stains, C.I., Ooi, A.T., Segal, D.J.: Direct detection of double-stranded DNA: molecular methods and applications for DNA diagnostics. Mol. Biosyst. 2, 551–560 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. Biet, E., Sun, J.S., Dutreix, M.: Conserved sequence preference in DNA binding among recombination proteins: an effect of ssDNA secondary structure. Nucleic Acids Res. 27, 596–600 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klug, A., Rhodes, D.: ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 12, 464–469 (1987)

    Article  CAS  Google Scholar 

  43. Segal, D.J., Barbas, C.F., III.: Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr. Opin. Biotechnol. 12, 632–637 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Beerli, R.R., Segal, D.J., Dreier, B., Barbas, C.F.: Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95, 14628–14633 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Q., Segal, D.J., Ghiara, J.B., Barbas, C.F.: Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94, 5525–5530 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D., Barbas, C.F.: Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29466–29478 (2001)

    Article  CAS  PubMed  Google Scholar 

  47. Segal, D.J., Dreier, B., Beerli, R.R., Barbas, C.F.: Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Segal, D.J., Beerli, R.R., Blancafort, P., Dreier, B., Effertz, K., Huber, A., Koksch, B., Lund, C.V., Magnenat, L., Valente, D., Barbas, C.F., 3rd.: Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 42, 2137–2148 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. Mangru, S.D., Harrison, D.J.: Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis. Electrophoresis 19, 2301–2307 (1998)

    Article  CAS  PubMed  Google Scholar 

  50. Geisthardt, D., Kruppa, J.: Polyacrylamide gel electrophoresis: reaction of acrylamide at alkaline pH with buffer components and proteins. Anal. Biochem. 160, 184–191 (1987)

    Article  CAS  PubMed  Google Scholar 

  51. Kim, D., Karns, K., Tia, S.Q., He, M., Herr, A.E.: Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic western blotting. Anal. Chem. 84, 2533–2540 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Brahmasandra, S.N., Ugaz, V.M., Burke, D.T., Mastrangelo, C.H., Burns, M.A.: Electrophoresis in microfabricated devices using photopolymerized polyacrylamide gels and electrode-defined sample injection. Electrophoresis 22, 300–311 (2001)

    Article  CAS  PubMed  Google Scholar 

  53. Neville, D.M.: Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. Biol. Chem. 246, 6328–6334 (1971)

    Article  CAS  PubMed  Google Scholar 

  54. Chung, M., Kim, D., Herr, A.E.: Polymer sieving matrices in microanalytical electrophoresis. Analyst 139, 5635–5654 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Koydemir, H.C., Külah, H., Özgen, C., Alp, A., Hasçelik, G.: MEMS biosensors for detection of methicillin resistant Staphylococcus aureus. Biosens. Bioelectron. 29, 1–12 (2011)

    Article  Google Scholar 

  56. Bhatia, A., Zahoor, S.: Staphylococcus aureus enterotoxins: a review. J. Clin. Diagn. Res. 3, 188–197 (2007)

    Google Scholar 

  57. Gilligan, K., Shipley, M., Stiles, B., Hadfield, T., Ibrahim, M.S.: Identification of Staphylococcus aureus enterotoxins A and B genes by PCR-ELISA. Mol. Cell. Probes 14, 71–78 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. Yuan, H., Liu, Y., Jiang, X., Xu, S., Sui, G.: Microfluidic chip for rapid analysis of cerebrospinal fluid infected with Staphylococcus aureus. Anal. Methods 6, 2015–2019 (2014)

    Article  CAS  Google Scholar 

  59. Bhakta, M.S., Segal, D.J.: The generation of zinc finger proteins by modular assembly. In: Engineered zinc finger proteins, pp. 3–30. Springer (2010)

    Chapter  Google Scholar 

  60. Ha, D.T., Ghosh, S., Ahn, C.H., Segal, D.J., Kim, M.-S.: Pathogen-specific DNA sensing with engineered zinc finger proteins immobilized on a polymer chip. Analyst 143, 4009–4016 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kluska, K., Adamczyk, J., Krężel, A.: Metal binding properties, stability and reactivity of zinc fingers. Coord. Chem. Rev. 367, 18–64 (2018)

    Article  CAS  Google Scholar 

  62. Duncombe, T.A., Herr, A.E.: Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis. Lab Chip 13, 2115–2123 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. Meagher, R.J., Hatch, A.V., Renzi, R.F., Singh, A.K.: An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8, 2046–2053 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. Bryan, J.: Molecular weights of protein multimers from polyacrylamide gel electrophoresis. Anal. Biochem. 78, 513–519 (1977)

    Article  CAS  PubMed  Google Scholar 

  65. Prot pi Protein Tool. https://www.protpi.ch/Calculator/ProteinTool. Accessed 31 Aug 2021

  66. Leimgruber, R.M., Malone, J.P., Radabaugh, M.R., LaPorte, M.L., Violand, B.N., Monahan, J.B.: Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses. Proteomics 2, 135–144 (2002)

    Article  CAS  PubMed  Google Scholar 

  67. Ferreira, C.M., Pinto, I.S., Soares, E.V., Soares, H.M.: (Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions—a review. RSC Adv. 5, 30989–31003 (2015)

    Article  CAS  Google Scholar 

  68. Hou, C., Herr, A.E.: Microfluidic integration of Western blotting is enabled by electrotransfer-assisted sodium dodecyl sulfate dilution. Analyst 138, 158–163 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. Herr, A.E., Hatch, A.V., Throckmorton, D.J., Tran, H.M., Brennan, J.S., Giannobile, W.V., Singh, A.K.: Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. USA 104, 5268–5273 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. He, M., Herr, A.E.: Automated microfluidic protein immunoblotting. Nat. Protoc. 5, 1844–1856 (2010)

    Article  CAS  PubMed  Google Scholar 

  71. Bottenus, D., Jubery, T.Z., Ouyang, Y., Dong, W.-J., Dutta, P., Ivory, C.F.: 10000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis. Lab Chip 11, 890–898 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smejkal, P., Bottenus, D., Breadmore, M.C., Guijt, R.M., Ivory, C.F., Foret, F., Macka, M.: Microfluidic isotachophoresis: a review. Electrophoresis 34, 1493–1509 (2013)

    Article  CAS  PubMed  Google Scholar 

  73. MICROBIAL FACTSHEET SERIES: Staphylococcus aureus. https://www.fsai.ie/staphylococcusaureus.html. Accessed 4 Sept 2021

  74. Hennekinne, J.-A., De Buyser, M.-L., Dragacci, S.: Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36, 815–836 (2012)

    Article  CAS  PubMed  Google Scholar 

  75. König, C., Simmen, H.P., Blaser, J.: Bacterial concentrations in pus and infected peritoneal fluid–implications for bactericidal activity of antibiotics. J. Antimicrob. Chemother. 42, 227–232 (1998)

    Article  PubMed  Google Scholar 

  76. Ghias, W., Sharif, M., Yazdani, F.A., Rabbani, M.: Isolation and identification of Methicillin and Vancomycin resistance Staphylococcus aureus from pus samples of injured skin patients in Lahore Pakistan. Biomed. Lett. 2, 103–112 (2016)

    Google Scholar 

  77. Lien, K.-Y., Lee, G.-B.: Miniaturization of molecular biological techniques for gene assay. Analyst 135, 1499–1518 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (2019R1F1A1043885). This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194010201750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyun Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arega, N.G., Heard, W.N., Tran, N.A.N. et al. Zinc-Finger-Protein-Based Microfluidic Electrophoretic Mobility Reversal Assay for Quantitative Double-Stranded DNA Analysis. BioChip J 15, 381–395 (2021). https://doi.org/10.1007/s13206-021-00038-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00038-9

Keywords

Navigation