Skip to main content
Log in

Low-cost Point-of-Care Biosensors Using Common Electronic Components as Transducers

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Although vast research has been performed on biosensors, the materialization of low-cost point-of-care (POC) biosensors exhibiting portability, user-friendliness, and highly reliable analytical performance has not yet been achieved. The utilization of electronic/optoelectronic components and devices as signal transducers is being studied as a promising approach for the development of ideal POC biosensors, owing to their remarkable advantages including robust optoelectronic properties, cost-effectiveness, low-bulkiness, and flexibility in applications. This review summarizes recent notable innovations in the development of POC biosensors, in terms of transducers. Specifically, the application of optoelectronic components (e.g., diode-lighting components and semiconductor imaging sensors) and electronic devices (e.g., flatbed scanner, bio/physical sensor, and smartphone) in biosensors is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sharma, S., Zapatero-Rodríguez, J., Estrela, P. & O’Kennedy, R. Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics. Biosensors5, 577–601 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Huang, X., Xu, D., Chen, J., Liu, J., Li, Y., Song, J., Ma, X. & Guo, J. Smartphone-based analytical biosensors. Analyst143, 5339–5351 (2018).

    CAS  PubMed  Google Scholar 

  3. Srinivasan, B. & Tung, S. Development and applications of portable biosensors. J. Lab. Autom.20, 365–389 (2015).

    CAS  PubMed  Google Scholar 

  4. Zarei, M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC, Trends Anal. Chem.91, 26–41 (2017).

    CAS  Google Scholar 

  5. Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev.42, 3184–3196 (2013).

    CAS  PubMed  Google Scholar 

  6. Kaushik, A. & Mujawar, M.A. Point of care sensing devices: Better care for everyone. Sensors (Basel, Switzerland)18, 4303 (2018).

    Google Scholar 

  7. Chin, C.D., Linder, V. & Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip12, 2118–2134 (2012).

    CAS  Google Scholar 

  8. Ahmed, M.U., Saaem, I., Wu, P.C. & Brown, A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol.34, 180–196 (2014).

    PubMed  Google Scholar 

  9. Nayak, S., Blumenfeld, N.R., Laksanasopin, T. & Sia, S.K. Point-of-care diagnostics: Recent developments in a connected age. Anal. Chem.89, 102–123 (2017).

    CAS  PubMed  Google Scholar 

  10. Ligler, F.S. & Gooding, J.J. Lighting up biosensors: Now and the decade to come. Anal. Chem.91, 8732–8738 (2019).

    CAS  PubMed  Google Scholar 

  11. Clark Jr., L.C. & Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci.102, 29–45 (1962).

    CAS  PubMed  Google Scholar 

  12. Hernández-Neuta, I., Neumann, F., Brightmeyer, J., Ba Tis, T., Madaboosi, N., Wei, Q., Ozcan, A. & Nilson, M. Smartphone-based clinical diagnostics: Towards democratization of evidence-based health care. J. Intern. Med.285, 19–39 (2019).

    PubMed  Google Scholar 

  13. Roda, A., Michelini, E., Zangheri, M., Di Fusco, M., Calabria, D. & Simoni, P. Smartphone—based biosensors: A critical review and perspectives. TrAC, Trends Anal. Chem.79, 317–325 (2016).

    CAS  Google Scholar 

  14. McCracken, K.E. & Yoon, J.-Y. Recent approaches for optical smartphone sensing in resource-limited settings: A brief review. Anal. Methods8, 6591–6601 (2016).

    Google Scholar 

  15. Zhu, H., Isikman, S.O., Mudanyali, O., Greenbaum, A. & Ozcan, A. Optical imaging techniques for point-of-care diagnostics. Lab Chip13, 51–67 (2013).

    CAS  PubMed  Google Scholar 

  16. Göröcs, Z. & Ozcan, A. Biomedical imaging and sensing using flatbed scanners. Lab Chip14, 3248–3257 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Nguyen, T., Zoëga Andreasen, S., Wolff, A. & Duong Bang, D. From lab on a chip to point of care devices: The role of open source microcontrollers. Micromachines9, 403 (2018).

    PubMed Central  Google Scholar 

  18. Urban, P.L. Universal electronics for miniature and automated chemical assays. Analyst140, 963–975 (2015).

    CAS  PubMed  Google Scholar 

  19. O’Toole, M. & Diamond, D. Absorbance based light emitting diode optical sensors and sensing devices. Sensors (Basel, Switzerland)8, 2453–2479 (2008).

    Google Scholar 

  20. Geng, Z., Zhang, X., Fan, Z., Lv, X., Su, Y. & Chen, H. Recent progress in optical biosensors based on smartphone platforms. Sensors (Basel, Switzerland)17, 2449 (2017).

    Google Scholar 

  21. Ainla, A., Mousavi, M.P.S., Tsaloglou, M-N., Redston, J., Bell, J.G., Fernández, M.T. & Whitesides, G.M. Open-source potentiostat for wireless electrochemical detection with smartphones. Anal. Chem.90, 6240–6246 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aronoff-Spencer, E., Venkatesh, A.G., Sun, A., Brickner, H., Looney, D. & Hall, D. A. Detection of hepatitis c core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens. Bioelectron.86, 690–696 (2016).

    CAS  PubMed  Google Scholar 

  23. Ji, D., Liu, Z., Liu, L., Low, S.S., Lu, Y., Yu, X., Zhu, L., Li, C. & Liu, Q. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens. Bioelectron.119, 55–62 (2018).

    CAS  PubMed  Google Scholar 

  24. Zhang, D. & Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron.75, 273–284 (2016).

    CAS  PubMed  Google Scholar 

  25. Luka, G.S., Nowak, E., Kawchuk, J., Hoorfar, M. & Najjaran, H. Portable device for the detection of colorimetric assays. R. Soc. Open Sci.4, 171025 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, Y.D., Chun, H.J. & Yoon, H.C. The transformation of common office supplies into a low-cost optical biosensing platform. Biosens. Bioelectron.59, 259–268 (2014).

    Google Scholar 

  27. Han, Y.D., Park, Y.M., Chun, H.J. & Yoon, H.C. A low-cost optical transducer utilizing common electronics components for the gold nanoparticle-based immunosensing application. Sens. Sens. Actuators, B220, 233–242 (2015).

    CAS  Google Scholar 

  28. Zhang, C.Q., Park, Y.M., Yang, D., Yoo, T.H. & Yoon, H.C. Development of a matrix metalloproteinase-2 (mmp-2) biosensing system by integrating an enzyme-mediated color development reaction into a common electronics components setup. BioChip J.10, 198–207 (2016).

    CAS  Google Scholar 

  29. Chen, B., Ma, J., Yang, T., Chen, L., Gao, P.F. & Huang, C.Z. A portable rgb sensing gadget for sensitive detection of Hg2+ using cysteamine-capped qds as fluorescence probe. Biosens. Bioelectron.98, 36–40 (2017).

    CAS  PubMed  Google Scholar 

  30. Fiedoruk-Pogrebniak, M., Granica, M. & Koncki, R. Compact detectors made of paired leds for photometric and fluorometric measurements on paper. Talanta178, 31–36 (2018).

    CAS  PubMed  Google Scholar 

  31. Obahiagbon, U., Smith, J.T., Zhu, M., Katchman, B.A., Arafa, H., Anderson, K.S. & Blain Christen, J.M. A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications. Biosens. Bioelectron.117, 153–160 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Torres Delgado, S.M., Korvink, J.G. & Mager, D. The eload platform endows centrifugal microfluidics with on-disc power and communication. Biosens. Bioelectron.117, 464–473 (2018).

    CAS  PubMed  Google Scholar 

  33. Kim, S., Kim, D. & Kim, S. A rapid real-time quantification in hybrid paper-polymer centrifugal optical devices. Biosens. Bioelectron.126, 200–206 (2019).

    CAS  PubMed  Google Scholar 

  34. Roda, A., Mirasoli, M., Colci, L.S., Buragina, A., Bonvicini F., Simoni, P. & Guardigli, M. Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis. Anal. Chem.83, 3178–3185 (2011).

    CAS  PubMed  Google Scholar 

  35. Rasooly, R., Do, P.M. & Hernlem, B.J. Low cost quantitative digital imaging as an alternative to qualitative in vivo bioassays for analysis of active aflatoxin b1. Biosens. Bioelectron.80, 405–410 (2016).

    CAS  PubMed  Google Scholar 

  36. Walzik, M.P., Vollmar, V., Lachnit, T., Dietz, H., Haug, S., Bachmann, H., Fath, M., Aschenbrenner, D., Mofrad S.A., Friedrich, O. & Gilbert, D.F. A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens. Bioelectron.64, 639–649 (2015).

    CAS  PubMed  Google Scholar 

  37. Han, Y.D., Kim, H.-S., Park, Y.M., Chun, H.J., Kim, J.-H. & Yoon, H.C. Retroreflective janus microparticle as a nonspectroscopic optical immunosensing probe. ACS Appl. Mater. Interfaces8, 10767–10774 (2016).

    CAS  PubMed  Google Scholar 

  38. Chun, H.J., Kim, S., Han, Y.D., Kim, D.W., Kim, K.R., Kim, H.-S., Kim, J.-H. & Yoon, H.C. Water-soluble mercury ion sensing based on the thymine-Hg2+-thymine base pair using retroreflective janus particle as an optical signaling probe. Biosens. Bio-electron.104, 138–144 (2018).

    CAS  Google Scholar 

  39. Chun, H.J., Kim, S., Han, Y.D., Kim, K.R., Kim, J.-H., Yoon, H. & Yoon, H.C. Salmonella typhimurium sensing strategy based on the loop-mediated isothermal amplification using retroreflective janus particle as a nonspectroscopic signaling probe. ACS Sens.3, 2261–2268 (2018).

    CAS  PubMed  Google Scholar 

  40. Cedillo-Alcantar, D.F., Han, Y.D., Choi, J., Garcia-Cordero, J.L. & Revzin, A. Automated droplet-based microfluidic platform for multiplexed analysis of biochemical markers in small volumes. Anal. Chem.91, 5133–5141 (2019).

    CAS  PubMed  Google Scholar 

  41. Kappi, F.A., Papadopoulos, G.A., Tsogas, G.Z. & Giokas, D.L. Low-cost colorimetric assay of biothiols based on the photochemical reduction of silver halides and consumer electronic imaging devices. Talanta172, 15–22 (2017).

    CAS  PubMed  Google Scholar 

  42. Peng, B., Chen, G., Li, K., Zhou, M., Zhang, J. & Zhao, S. Dispersive liquid-liquid microextraction coupled with digital image colorimetric analysis for detection of total iron in water and food samples. Food Chem.230, 667–672 (2017).

    CAS  PubMed  Google Scholar 

  43. Vidal, M., Garcia-Arrona, R., Bordagaray, A., Ostra, M. & Albizu, G. Simultaneous determination of color additives tartrazine and allura red in food products by digital image analysis. Talanta184, 58–64 (2018).

    CAS  PubMed  Google Scholar 

  44. Volmer, D.A., Curbani, L., Parker, T.A., Garcia, J., Schultz, L.D. & Borges, E.M. Determination of titratable acidity in wine using potentiometric, conductometric, and photometric methods. J.Chem. Educ.94, 1296–1302 (2017).

    CAS  Google Scholar 

  45. Göröcs, Z., Ling, Y., Yu, M.D., Karahalios, D., Mogharabi, K., Lu, K., Wei, Q. & Ozcan, A. Gigapixel fluorescent imaging over an ultra-large field-of-view using a flatbed scanner. Lab Chip13, 4460–4466 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Christodouleas, D.C., Nemiroski, A., Kumar, A.A. & Whitesides, G.M. Broadly available imaging devices enable high-quality low-cost photometry. Anal. Chem.87, 9170–9178 (2015).

    CAS  PubMed  Google Scholar 

  47. Lisi, F., Peterson, J.R. & Gooding, J.J. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens. Bioelectron.148, 111835 (2020).

    CAS  PubMed  Google Scholar 

  48. Liu, D., Tian, T., Chen, X., Lei, Z., Song, Y., Shi, Y., Ji, T., Zhu, Zhi., Yang L. & Yang C. Gas-generating reactions for point-of-care testing. Analyst143, 1294–1304 (2018).

    CAS  PubMed  Google Scholar 

  49. Xiang, Y. & Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem.3, 697–703 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiang, Y., Lan, T. & Lu, Y. Using the widely available blood glucose meter to monitor insulin and hba1c. J. Diabetes Sci. Technol.8, 855–858 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, B., Guan, Z., Song, Y., Song, E., Lu, Z., Liu, D., An, Y., Zhu, Z., Zhou, L. & Yang, C. Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein. Lab Chip18, 965–970 (2018).

    CAS  PubMed  Google Scholar 

  52. Ji, T., Liu, D., Liu, F., Li, J., Ruan, Q., Song, Y., Tian, T., Zhu, Z., Zhou, L., Lin, H., Yang, C. & Wang, D. A pressure-based bioassay for the rapid, portable and quantitative detection of c-reactive protein. Chem. Commun.52, 8452–8454 (2016).

    CAS  Google Scholar 

  53. Liu, D., Jia, S., Zhang, H., Ma, Y., Guan, Z., Li, J., Zhu, Z., Ji, T. & Yang, C.J. Integrating target-responsive hydrogel with pressuremeter readout enables simple, sensitive, user-friendly, quantitative point-of-care testing. ACS Appl. Mater. Interfaces9, 22252–22258 (2017).

    CAS  PubMed  Google Scholar 

  54. Sun, K., Yang, Y., Zhou, H., Yin, S., Qin, W., Yu, J., Chiu, D.T., Yuan, Z., Zhang, X. & Wu, C. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. ACS Nano12, 5176–5184 (2018).

    CAS  PubMed  Google Scholar 

  55. Kang, W., Huang, H., Cai, M., Li, Y., Hou, W., Yun, F., Wu, X., Xue, L., Wang, S. & Liu, F. On-site cell concentration and viability detections using smart-phone based field-portable cell counter. Anal. Chim. Acta1077, 216–224 (2019).

    CAS  PubMed  Google Scholar 

  56. Li, Z., Zhang, S., Yu, T., Dai, Z. & Wei, Q. Aptamer-based fluorescent sensor array for multiplexed detection of cyanotoxins on a smartphone. Anal. Chem.91, 10448–10457 (2019).

    CAS  PubMed  Google Scholar 

  57. Foysal, K.H., Seo, S.E., Kim, M.J., Kwon, O.S. & Chong, J.W. Analyte quantity detection from lateral flow assay using a smartphone. Sensors (Basel, Switzerland)19, 4812 (2019).

    CAS  Google Scholar 

  58. Aydindogan, E., Guler Celik, E. & Timur, S. Paper-based analytical methods for smartphone sensing with functional nanoparticles: Bridges from smart surfaces to global health. Anal. Chem.90, 12325–12333 (2018).

    CAS  PubMed  Google Scholar 

  59. Li, X., Wang, J., Yi, C., Jiang, L., Wu, J., Chen, X., Shen, X., Sun, Y. & Lei, H. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed. Sens. Actuators, B290, 170–179 (2019).

    CAS  Google Scholar 

  60. Lee, S., Kim, G. & Moon, J. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin b1 by using a smartphone-based reading system. Sensors (Basel, Switzerland)13, 5109–5116 (2013).

    CAS  Google Scholar 

  61. Cheng, N., Song, Y., Zeinhom, M.M.A., Chang, Y.-C., Sheng, L., Li, H., Du, D., Li, L., Z, M.-J., Luo, Y., Xu, W. & Lin, Y. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces9, 40671–40680 (2017).

    CAS  PubMed  Google Scholar 

  62. Zangheri, M., Cevenini, L., Anfossi, L., Baggiani, C., Simoni, P., Di Nardo, F. & Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron.64, 63–68 (2015).

    CAS  Google Scholar 

  63. Rong, Z., Wang, Q., Sun, N., Jia, X., Wang, K., Xiao, R. & Wang, S. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of zika virus nonstructural protein 1. Anal. Chim. Acta1055, 140–147 (2019).

    CAS  PubMed  Google Scholar 

  64. Jin, B., Yang, Y., He, R., Park, Y.I., Lee, A., Bai, D., Li, F., Lu, T.J., Xu, F. & Lin, M. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sens. Actuators, B276, 48–56 (2018).

    Google Scholar 

  65. Rajendran, V.K., Bakthavathsalam, P., Bergquist, P.L. & Sunna, A. Smartphone detection of antibiotic resistance using convective pcr and a lateral flow assay. Sens. Actuators, B298, 126849 (2019).

    CAS  Google Scholar 

  66. Lee, J.W., Nguyen, V.D. & Seo, T.S. Paper-based molecular diagnostics for the amplification and detection of pathogenic bacteria from human whole blood and milk without a sample preparation step. BioChip J.13, 243–250 (2019).

    CAS  Google Scholar 

  67. Yuzon, M.K., Kim, J-H. & Kim, S. A novel paper-plastic microfluidic hybrid chip integrated with a lateral flow immunoassay for dengue nonstructural protein 1 antigen detection. BioChip J.13, 277–287 (2019).

    CAS  Google Scholar 

  68. Sun, H., Jia, Y., Dong, H., Fan, L. & Zheng, J. Multiplex quantification of metals in airborne particulate matter via smartphone and paper-based microfluidics. Anal. Chim. Acta1044, 110–118 (2018).

    CAS  PubMed  Google Scholar 

  69. Roda, A., Michelini, E., Cevenini, L., Calabria, D., Calabretta, M.M. & Simoni, P. Integrating biochem-iluminescence detection on smartphones: Mobile chemistry platform for point-of-need analysis. Anal. Chem.86, 7299–7304 (2014).

    CAS  PubMed  Google Scholar 

  70. Im, S.H., Kim, K.R., Park, Y.M., Yoon, J.H., Hong, J.W. & Yoon, H. C. An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device. Sens. Actuators, B229, 166–173 (2016).

    CAS  Google Scholar 

  71. Chun, H.J., Park, Y.M., Han, Y.D., Jang, Y.H. & Yoon, H.C. Paper-based glucose biosensing system utilizing a smartphone as a signal reader. BioChip J.8, 218–226 (2014).

    CAS  Google Scholar 

  72. Kong, L., Gan, Y., Liang, T., Zhong, L., Pan, Y., Kirsanov, D., Legin, A., Wan, H. & Wang, P. A novel smartphone-based cd-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid. Anal. Chim. Acta1093, 150–159 (2020).

    CAS  PubMed  Google Scholar 

  73. Wang, L.-J., Chang, Y.-C., Ge, X., Osmanson, A.T., Du, D., Lin, Y. & Li, L. Smartphone optosensing platform using a dvd grating to detect neurotoxins. ACS Sens.1, 366–373 (2016).

    CAS  Google Scholar 

  74. de Oliveira, H.J.S., de Almeida, P.L., Sampaio, B.A., Fernandes, J.P.A., Pessoa-Neto, O.D., de Lima, E.A. & de Almeida, L.F. A handheld smartphone-controlled spectrophotometer based on hue to wavelength conversion for molecular absorption and emission measurements. Sens. Actuators, B238, 1084–1091 (2017).

    Google Scholar 

  75. Chang, Y.-C., Ge, X., Wang, L.-J., Lee, S.S., Paulsen, M.H., Khan, Q.M., Khalid, Z.M., Bhalli, J.A., Waheed, U., Simpson, C.D., Du, D., Li, L. & Lin, Y. An ultra low-cost smartphone device for in-situ monitoring of acute organophosphorus poisoning for agricultural workers. Sens. Actuators, B275, 300–305 (2018).

    CAS  Google Scholar 

  76. Wang, Y., Liu, X., Chen, P., Tran, N.T., Zhang, J., Chia, W.S., Boujday, S. & Liedberg, B. Smartphone spectrometer for colorimetric biosensing. Analyst141, 3233–3238 (2016).

    CAS  PubMed  Google Scholar 

  77. Fu, Q., Wu, Z., Xu, F., Li, X., Yao, C., Xu, M., Sheng, L., Yu, S. & Tang, Y. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip16, 1927–1933 (2016).

    CAS  PubMed  Google Scholar 

  78. Park, Y.M., Han, Y.D., Kim, K.R., Zhang, C. & Yoon, H.C. An immunoblot-based optical biosensor for screening of osteoarthritis using a smartphone-embedded illuminometer. Anal. Methods7, 6437–6442 (2015).

    Google Scholar 

  79. Fu, Q., Wu, Z., Li, X., Yao, C., Yu, S., Xiao, W. & Tang, Y. Novel versatile smart phone based microplate readers for on-site diagnoses. Biosens. Bioelectron.81, 524–531 (2016).

    CAS  PubMed  Google Scholar 

  80. Hussain, I., Ahamad, K.U. & Nath, P. Low—cost, robust, and field portable smartphone platform photometric sensor for fluoride level detection in drinking water. Anal. Chem.89, 767–775 (2017).

    CAS  PubMed  Google Scholar 

  81. Park, Y.M., Han, Y.D., Chun, H.J. & Yoon, H.C. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor. Biosens. Bioelectron.93, 205–211 (2017).

    CAS  PubMed  Google Scholar 

  82. Sanjay, S.T., Fu, G., Dou, M., Xu, Feng., Liu, R., Qi, H. & Li, X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst140, 7062–7081 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Culbertson, C.T., Mickleburgh, T.G., Stewart-James, S.A., Sellens, K.A. & Pressnall, M. Micro total analysis systems: Fundamental advances and biological applications. Anal. Chem.86, 95–118 (2014).

    CAS  PubMed  Google Scholar 

  84. Kovarik, M.L., Ornoff, D.M., Melvin, A.T., Dobes, N.C., Wang, Y., Dickinson, A.J., Gach, P.C., Shah, P.K. & Allbritton, N.L. Micro total analysis systems: Fundamental advances and applications in the laboratory, clinic, and field. Anal. Chem.85, 451–472 (2013).

    CAS  PubMed  Google Scholar 

  85. McCracken, K.E., Angus, S.V., Reynolds, K.A. & Yoon, J.-Y. Multimodal imaging and lighting bias correction for improved μpad-based water quality monitoring via smartphones. Sci. Rep.6, 27529 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Berg, B., Cortazar, B., Tseng, D., Ozkan, H., Feng, S., Wei, Q., Chan, R.Y., Burbano, J., Farooqui, Q., Lewinski, M., Di Carlo, D., Garner, O.B. & Ozcan, A. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano9, 7857–7866 (2015).

    CAS  PubMed  Google Scholar 

  87. McRae, M.P., Simmons, G., Wong, J. & McDevitt, J.T. Programmable bio-nanochip platform: A point-of-care biosensor system with the capacity to learn. Acc. Chem. Res.49, 1359–1368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mutlu, A.Y., Kılıç, V., Üzdemir, G.K., Bayram, A., Horzum, N. & Solmaz, M.E., Smartphone-based colorimetric detection via machine learning. Analyst142, 2434–2441 (2017).

    CAS  PubMed  Google Scholar 

  89. Ballard, Z.S., Shir, D., Bhardwaj, A., Bazargan, S., Sathianathan, S. & Ozcan, A. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning. ACS Nano11, 2266–2274 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Im, H., Castro, C.M., Shao, H., Liong, M., Song, J., Pathania, D., Fexon, L., Min, C., Avila-Wallace, M., Zurkiya, O., Rho, J., Magaoay, B., Tambouret, R.H., Pivovarov, M., Weissleder, R. & Lee, H. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone. Proc. Natl. Acad. Sci. U. S. A.112, 5613 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Roy, M., Seo, D., Oh, C.-H., Nam, M.-H., Kim, Y.J. & Seo, S. Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology. Biosens. Bio-electron.67, 715–723 (2015).

    CAS  Google Scholar 

  92. Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods136, 4–16 (2018).

    CAS  PubMed  Google Scholar 

  93. Cetin, A.E. Coskun, A.F., Galarreta B.C., Huang, M., Herman, D., Ozcan, A. & Altug H. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light: Sci. Appl.3, e122–e122 (2014).

    CAS  Google Scholar 

  94. Ray, T.R. Choi, J., Bandodkar A.J., Krishnan, S., Gutruf, P., Tian, L., Ghaffari R. & Rogers, J.A. Bio-integrated wearable systems: A comprehensive review. Chem. Rev.119, 5461–5533 (2019).

    CAS  PubMed  Google Scholar 

  95. Choi, S., Lee H., Ghaffari, R., Hyeon, T. & Kim, D.H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater.28, 4203–4218 (2016).

    CAS  PubMed  Google Scholar 

  96. Rachim, V.P. & Chung, W.-Y., Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sens. Actuators, B286, 173–180 (2019).

    CAS  Google Scholar 

  97. Zilberstein, G., Zilberstein, R., Maor, U. & Righetti, P.G. Noninvasive wearable sensor for indirect glucometry. Electrophoresis39, 2344–2350 (2018).

    CAS  PubMed  Google Scholar 

  98. Kim, J., Campbell, A.S. & Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta177, 163–170 (2018).

    CAS  PubMed  Google Scholar 

  99. Kim, J., Campbell, A.S., de Ávila, B.E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol.37, 389–406 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Creative Materials Discovery Program (NRF-2019 M3D1A1078943) and the Priority Research Centers Program (NRF-2019R1A6A1A11051471) funded by the National Research Foundation of Korea. We also acknowledge the support from the SGER Program (NRF-2018R1D1A1A02085354) funded by the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun C. Yoon.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y.D., Chun, H.J. & Yoon, H.C. Low-cost Point-of-Care Biosensors Using Common Electronic Components as Transducers. BioChip J 14, 32–47 (2020). https://doi.org/10.1007/s13206-020-4104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4104-8

Keywords

Navigation