Skip to main content
Log in

Molecular Docking-assisted Protein Chip Screening of Inhibitors for Bcl-2 Family Protein-protein Interaction to Discover Anticancer Agents by Fragment-based Approach

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

For fragment-based cancer drug discovery, we introduced a molecular docking simulation combined with a protein chip assay. Protein chip technology was used to find fragment-hits that had inhibitory activity against Bcl-2 protein from 131 pre-selected fragment chemicals. Molecular docking simulation was performed for the 12 identified fragment-hits to establish the binding mode of these compounds in the Bcl-2 site. Using the molecular docking-assisted protein chip screening system, we derived a virtual compound structure with an important scaffold feature for interaction with the Bcl-2 protein. We then tested the anticancer activity of 26 compounds that were similar to the scaffold structure. The anticancer activity was confirmed by MTT-assay in A549 lung cancer cells. Finally, three chemicals showed dose-dependent inhibitory activity against cancer cell proliferation. We suggest that the present molecular docking-assisted protein chip assay can be used as a platform technology in the fragment-based drug development process to discover inhibitory agents of protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table 1.
Figure 2.
Figure 3.
Figure 4.
Table 2.

Similar content being viewed by others

References

  1. Gotwals, P., Cameron, S., Cipolletta, D., Cremasco, V., Crystal, A., Hewes, B., Mueller, B., Quaratino, S., Sabatos-Peyton, C., Petruzzelli, L., Engelman, J.A. & Dranoff, G. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer, 17, 286–301 (2017).

    Article  CAS  Google Scholar 

  2. Sawyers, C. Targeted cancer therapy. Nature, 432, 294–297 (2004).

    Article  CAS  Google Scholar 

  3. Saglio, G., Kim, D.W., Issaragrisil, S., le Coutre, P., Etienne, G., Lobo, C., Pasquini, R., Clark, R.E., Hochhaus, A., Hughes, T.P., Gallagher, N., Hoenekopp, A., Dong, M., Haque, A., Larson, R.A. & Kantarjian, H.M. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med., 362, 2251–2259 (2010).

    Article  CAS  Google Scholar 

  4. Mendelsohn, J. & Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene, 19, 6550–6565 (2000).

    Article  CAS  Google Scholar 

  5. Shepherd, F.A. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med., 353, 123–132 (2005)

    Article  CAS  Google Scholar 

  6. Hurwitz, H.I., Fehrenbacher, L., Hainsworth, J.D., Heim, W., Berlin, J., Holmgren, E., Hambleton, J., Novotny, W.F. & Kabbinavar, F. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J. Clin. Oncol., 23, 3502–3508 (2005).

    Article  CAS  Google Scholar 

  7. Li, Z., Ivanov, A.A., Su, R., Gonzalez-Pecchi, V., Qi, Q., Liu, S., Webber, P., McMillan, E., Rusnak, L., Pham, C., Chen, X., Mo, X., Revennaugh, B., Zhou, W., Marcus, A., Harati, S., Chen, X., Johns, M.A., White, M.A., Moreno, C., Cooper, L.A., Du, Y., Khuri, F.R., & Fu, H. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat. Commun. 8, 14356 (2017).

    Article  CAS  Google Scholar 

  8. Cossins, B.P. & Lawson, A.D. Small Molecule Targeting of Protein-Protein Interactions through Allosteric Modulation of Dynamics. Molecules, 20, 16435–16445 (2015).

    Article  CAS  Google Scholar 

  9. Giordanetto, F., Schäfer, A. & Ottmann, C. Stabilization of protein-protein interactions by small molecules. Drug Discovery Today, 19, 1812–1821 (2014).

    Article  CAS  Google Scholar 

  10. Nero, T.L., Morton, C.J., Holien, J.K., Wielens, J. & Parker, M.W. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer, 14, 248–262 (2014).

    Article  CAS  Google Scholar 

  11. Cukuroglu, E., Engin, H.B., Gursoy, A. & Keskin, O. Hot spots in protein-protein interfaces: towards drug discovery. Prog. Biophys. Mol. Biol., 166, 165–173 (2014).

    Article  Google Scholar 

  12. Secchiero, P., Bosco, R., Celeghini, C. & Zauli, G. Recent advances in the therapeutic perspectives of Nutlin-3. Curr. Pharm. Des., 17, 569–577 (2011).

    Article  CAS  Google Scholar 

  13. Ivanov, A.A., Khuri, F.R. & Fu, H. Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol. Sci., 34, 393–400 (2013).

    Article  CAS  Google Scholar 

  14. Tsujimoto, Y., Finger, L.R., Yunis, J., Nowell, P.C. & Croce, C.M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science, 226, 1097–1099 (1984).

    Article  CAS  Google Scholar 

  15. Petros, A.M., Medek, A., Nettesheim, D.G., Kim, D. H., Yoon, H.S., Swift, K., Matayoshi, E.D., Oltersdorf, T. & Fesik, S.W. Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA, 98, 3012–3017 (2001).

    Article  CAS  Google Scholar 

  16. Juin, P., Geneste, O., Gautier, F., Depil, S. & Campone, M. Decoding and unlocking the BCL-2 dependency of cancer cells. Nat. Rev. Cancer, 13, 455–465 (2013).

    Article  CAS  Google Scholar 

  17. Czabotar, P.E., Lessene, G., Strasser, A. & Adams, J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 15, 49–63 (2014).

    Article  CAS  Google Scholar 

  18. Roberts, A.W. & Huang, D. Targeting BCL2 With BH3 Mimetics: Basic Science and Clinical Application of Venetoclax in Chronic Lymphocytic Leukemia and Related B Cell Malignancies. Clin. Pharmacol. Ther., 101, 89–98 (2017).

    Article  CAS  Google Scholar 

  19. Radha, G. & Raghavan, S.C. BCL2: A promising cancer therapeutic target. Biochim. Biophys. Acta. Rev. Cancer, 1868, 309–314 (2017).

    Article  CAS  Google Scholar 

  20. Joensuu, H., Pylkkänen, L. & Toikkanen, S. Bcl-2 protein expression and long-term survival in breast cancer. Am. J. Pathol., 145, 1191–1198 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hague, A., Moorghen, M., Hicks, D., Chapman, M. & Paraskeva, C. BCL-2 expression in human colorectal adenomas and carcinomas. Oncogene, 9, 3367–3370 (1994).

    CAS  PubMed  Google Scholar 

  22. Anagnostou, V.K., Lowery, F.J., Zolota, V., Tzelepi, V., Gopinath, A., Liceaga, C., Panagopoulos, N., Frangia, K., Tanoue, L., Boffa, D., Gettinger, S., Detterbeck, F., Homer, R.J., Dougenis, D., Rimm, D.L. & Syrigos, K.N. High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer 10, 186 (2010).

    Article  Google Scholar 

  23. Pepper, C., Hoy, T. & Bentley, P. Elevated Bcl-2/Bax Are a Consistent Feature of Apoptosis Resistance in B-cell Chronic Lymphocytic Leukaemia and Are Correlated with In Vivo Chemoresistance. Leuk. Lymphoma, 28, 355–361 (1998).

    Article  CAS  Google Scholar 

  24. Jin, J., Xiong, Y. & Cen, B. Bcl-2 and Bcl-xL mediate resistance to receptor tyrosine kinase-targeted therapy in lung and gastric cancer. Anticancer Drugs, 28, 1141–1149 (2017).

    Article  CAS  Google Scholar 

  25. Thomas, S., Quinn B.A., Das, S.K., Dash, R., Emdad, L., Dasgupta, S., Wang, X.Y., Dent, P., Reed, J.C., Pellecchia, M., Sarkar, D. & Fisher, P.B. Targeting the Bcl-2 family for cancer therapy. Expert Opin. Ther. Targets, 17, 61–75 (2013).

    Article  CAS  Google Scholar 

  26. Jubb, H., Higueruelo, A.P., Winter, A. & Blundell, T.L. Structural biology and drug discovery for protein-protein interactions. Trends Pharmacol. Sci., 33, 241–248 (2012).

    Article  CAS  Google Scholar 

  27. Erlanson, D.A., Wells, J.A. & Braisted, A.C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct., 33, 199–223 (2004).

    Article  CAS  Google Scholar 

  28. Valkov, E., Sharpe, T., Marsh, M., Greive, S. & Hyvönen, M. Targeting protein-protein interactions and fragment-based drug discovery. Top. Curr. Chem., 317, 145–179 (2012).

    Article  CAS  Google Scholar 

  29. Mohammad, R.M., Goustin, A.S., Aboukameel, A., Chen, B., Banerjee, S., Wang, G., Nikolovska-Coleska, Z., Wang, S. & Al-Katib, A. Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin. Cancer Res., 13, 2226–2235 (2007).

    Article  CAS  Google Scholar 

  30. Huang, Z. Bcl-2 family proteins as targets for anti-cancer drug design. Oncogene, 19, 6627–6631 (2000).

    Article  CAS  Google Scholar 

  31. Ferreira, L.G., Oliva, G. & Andricopulo, A.D. Protein-protein interaction inhibitors: advances in anti-cancer drug design. Expert Opin. Drug Discovery, 11, 957–968 (2016).

    Article  CAS  Google Scholar 

  32. Erlanson, D.A., Fesik, S.W., Hubbard, R.E., Jahnke, W. & Jhotim H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discovery, 15, 605–619 (2016).

    Article  CAS  Google Scholar 

  33. Caliandro, R., Belviso, D.B., Aresta, B.M., Candia, M. & Altomare, C.D. Protein crystallography and fragment-based drug design. Future Med. Chem., 5, 1121–1140 (2013).

    Article  CAS  Google Scholar 

  34. Kim, H.Y. & Wyss, D.F. NMR screening in fragment-based drug design: a practical guide. Methods Mol. Biol., 1263, 197–208 (2015).

    Article  CAS  Google Scholar 

  35. Chen, H., Zhou, X., Wang, A., Zheng, Y., Gao, Y. & Zhou, J. Evolutions in fragment-based drug design: the deconstruction-reconstruction approach. Drug Discovery Today, 20, 105–113 (2015).

    Article  CAS  Google Scholar 

  36. Kumar, A., Voet, A. & Zhang, K.Y. Fragment based drug design: from experimental to computational approaches. Curr. Med. Chem., 19, 5128–5147 (2012).

    Article  CAS  Google Scholar 

  37. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P. & Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 47, 1739–1749 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03035796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjin Choi.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Electronic supplementary material

13206_2019_3306_MOESM1_ESM.pdf

Molecular Docking-assisted Protein Chip Screening of Inhibitors for Bcl-2 Family Protein-protein Interaction to Discover Anticancer Agents by Fragment-based Approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoou, MS., Cho, S. & Choi, Y. Molecular Docking-assisted Protein Chip Screening of Inhibitors for Bcl-2 Family Protein-protein Interaction to Discover Anticancer Agents by Fragment-based Approach. BioChip J 13, 260–268 (2019). https://doi.org/10.1007/s13206-019-3306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3306-4

Keywords

Navigation