Skip to main content
Log in

Microfabricated cell culture system for the live cell observation of the multilayered proliferation of undifferentiated HT-29 cells

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

In this paper, we describe a microfabricated cell culture system (MCCS) for the microscopic live observation of cellular behavior in a reconstituted tissue-like microenvironment. The MCCS was used as a novel tool for tracking the proliferation of undifferentiated HT-29 cells. A wall structure of gelled extracellular matrix (ECM) protein was constructed inside the MCCS to establish a tissue-like microenvironment of the intestinal tissue. The ECM wall consisting of type I collagen retained the structural integrity during the gelation process and provided the adhesion surface for the HT-29 cells. We carried out the microscopic live observation of the proliferation of HT-29 cells seeded with various concentrations. The multilayered growth of HT-29 cells in the undifferentiated state was monitored without cell fixation, which was a necessary process in a conventional in vitro cell culture. The live tracking of cell culture also recorded the contraction of cell culture morphology during the initial period of cultivation. This approach is helpful for the establishment of an in vitro model for the live observation study of intestinal epithelial differentiation in an in vivo-like microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young, E.W.K. & Beebe, D.J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39, 1036–1048 (2010).

    Article  CAS  Google Scholar 

  2. Wu, M.-H., Huang, S.-B. & Lee, G.-B., Microfluidic cell culture systems for drug research. Lab Chip 10, 939–956 (2010).

    Article  CAS  Google Scholar 

  3. El-Ali, J., Sorger, P.K. & Jensen, K.F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  Google Scholar 

  4. Song, J.W., Bazou, D. & Munn, L.L. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr. Biol. 4, 857–862 (2012).

    Article  CAS  Google Scholar 

  5. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  Google Scholar 

  6. Imura, Y., Asano, Y., Sato, K. & Yoshimura, E. A microfluidic system to evaluate intestinal absorption. Anal. Sci. 25, 1403–1407 (2009).

    Article  CAS  Google Scholar 

  7. Kim, H.J., Huh, D., Hamilton, G. & Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    Article  CAS  Google Scholar 

  8. Kim, S.H. et al. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr. Biol. 6, 1122–1131 (2014).

    Article  CAS  Google Scholar 

  9. Wu, W.-H. et al. A capillary-endothelium-mimetic microfluidic chip for the study of immune responses. Sensor. Actuat. B: Chem. 209, 470–477 (2015).

    Article  CAS  Google Scholar 

  10. Zervantonakis, I.K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. P. Natl. Acad. Sci. USA 109, 13515–13520 (2012).

    Article  CAS  Google Scholar 

  11. Sudo, R. et al. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23, 2155–2164 (2009).

    Article  CAS  Google Scholar 

  12. Fogh, J. & Trempe, G. New human tumor cell lines. In Human tumor cells in vitro, 1 ed., Fogh, J., Ed. Springer US: Boston, MA, pp. 115–159 (1975).

    Chapter  Google Scholar 

  13. Simon-Assmann, P., Turck, N., Sidhoum-Jenny, M., Gradwohl, G. & Kedinger, M. In vitro models of intestinal epithelial cell differentiation. Cell Biol. Toxicol. 23, 241–256 (2007).

    Article  CAS  Google Scholar 

  14. Zweibaum, A., Laburthe, M., Grasset, E. & Louvard, D. Use of cultured cell lines in studies of intestinal cell differentiation and function. In Comprehensive physiology, John Wiley & Sons, Inc., pp. 223–225 (2011).

    Google Scholar 

  15. Lesuffleur, T., Barbat, A., Dussaulx, E. & Zweibaum, A. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucussecreting cells. Cancer Res. 50, 6334–6343 (1990).

    CAS  Google Scholar 

  16. Lesuffleur, T. et al. Dihydrofolate reductase gene amplification- associated shift of differentiation in methotrexate- adapted HT-29 cells. J. Cell Biol. 115, 1409–1418 (1991).

    Article  CAS  Google Scholar 

  17. Rousset, M. The human colon carcinoma cell lines HT- 29 and Caco-2: Two in vitro models for the study of intestinal differentiation. Biochimie 68, 1035–1040 (1986).

    Article  CAS  Google Scholar 

  18. East, J.A., Langdon, S.P., Townsend, K.M.S. & Hickman, J.A. The influence of type I collagen on the growth and differentiation of the human colonic adenocarcinoma cell line HT-29 in vitro. Differentiation 50, 179–188 (1992).

    Article  CAS  Google Scholar 

  19. Lam, P., Wynne, K.J. & Wnek, G.E. Surface-tensionconfined microfluidics. Langmuir 18, 948–951 (2002).

    Article  CAS  Google Scholar 

  20. Hwang, H., Park, J., Shin, C., Do, Y. & Cho, Y.-K. Three dimensional multicellular co-cultures and anticancer drug assays in rapid prototyped multilevel microfluidic devices. Biomed. Microdevices 15, 627–634 (2013).

    Article  CAS  Google Scholar 

  21. Kleinman, H.K. & Martin, G.R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378–386 (2005).

    Article  CAS  Google Scholar 

  22. Hughes, C.S., Postovit, L.M. & Lajoie, G.A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    Article  CAS  Google Scholar 

  23. Simon-Assmann, P., Kedinger, M., De Arcangelis, A., Rousseau, V. & Simo, P. Extracellular matrix components in intestinal development. Experientia 51, 883–900 (1995).

    Article  CAS  Google Scholar 

  24. Gervais, T., El-Ali, J., Gunther, A. & Jensen, K.F. Flowinduced deformation of shallow microfluidic channels. Lab Chip 6, 500–507 (2006).

    Article  CAS  Google Scholar 

  25. Haier, J., Nasralla, M. & Nicolson, G.L. Different adhesion properties of highly and poorly metastatic HT-29 colon carcinoma cells with extracellular matrix components: Role of integrin expression and cytoskeletal components. Brit. J. Cancer 80, 1867–1874 (1999).

    Article  CAS  Google Scholar 

  26. Yang, Y.-l., Motte, S. & Kaufman, L.J. Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31, 5678–5688 (2010).

    Article  CAS  Google Scholar 

  27. Zaman, M.H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. P. tNatl. Acad. Sci. USA 103, 10889–10894 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Kyun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Park, JK. Microfabricated cell culture system for the live cell observation of the multilayered proliferation of undifferentiated HT-29 cells. BioChip J 11, 308–315 (2017). https://doi.org/10.1007/s13206-017-1407-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-1407-5

Keywords

Navigation