Skip to main content
Log in

Three-dimensional in vitro gut model on a villi-shaped collagen scaffold

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) tissue architecture provides essential cellular environmental cues for cell differentiation. We previously reported that Caco- 2 human intestinal epithelial cells grown on a 3D villi-shaped scaffold composed of collagen created a tissue structure resembling the human intestinal villi. Here, we compared the absorptive and metabolic properties of Caco-2 cells cultured on the 3D villi with those in 2D monolayer. Cell growth was higher in the 3D villi model compared with the 2D monolayer, probably owing to an increase in the available surface area. Barrier functions were more in vivo-like in the 3D villi model in association with reduced expression of tight junction and transporter proteins. The specific activities of the metabolic enzyme and intestinal epithelial differentiation marker, alkaline phosphatase, were improved in the 3D villi model, whereas aminopeptidase activity was comparable in the two models. These results suggest that the 3D villi scaffold induces physiological changes in Caco-2 cells, related to the absorption and metabolism of drugs. This 3D villi model may serve as an alternative and improved in vitro gut model for studying drug metabolism and transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiMasi, J.A., Hansen, R.W. & Grabowski, H.G. The price of innovation: new estimates of drug development costs. J Health Econ 22, 151–185 (2003).

    Article  Google Scholar 

  2. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  3. Meyvantsson, I. & Beebe, D.J. Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto Calif) 1, 423–449 (2008).

    Article  CAS  Google Scholar 

  4. Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109, 9342–9347 (2012).

    Article  CAS  Google Scholar 

  5. Samatov, T.R. et al. Tumour-like druggable gene expression pattern of CaCo2 cells in microfluidic chip. BioChip J. 10, 215–220 (2016).

    Article  CAS  Google Scholar 

  6. Sung, J.H., Yu, J., Luo, D., Shuler, M.L. & March, J.C. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11, 389–392 (2011).

    Article  CAS  Google Scholar 

  7. Linan, Z., J. Song & D. Kim, A study on cancer-cell invasion based on multi-physics analysis technology. BioChip J. 4, 161–165 (2010).

    CAS  Google Scholar 

  8. Khetani, S.R. & Bhatia, S.N. Microscale culture of human liver cells for drug development. Nat Biotechnol 26, 120–126 (2008).

    Article  CAS  Google Scholar 

  9. Kim, J., Hegde, M. & Jayaraman, A. Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions. Lab Chip 10, 43–50 (2010).

    Article  CAS  Google Scholar 

  10. Huh, D., Torisawa, Y.S., Hamilton, G.A., Kim, H.J. & Ingber, D.E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156–2164 (2012).

    Article  CAS  Google Scholar 

  11. Sung, J.H. et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13, 1201–1212 (2013).

    Article  CAS  Google Scholar 

  12. Weaver, V.M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137, 231–245 (1997).

    Article  CAS  Google Scholar 

  13. Abbott, A. Cell culture: biology’s new dimension. Nature 424, 870–872 (2003).

    Article  CAS  Google Scholar 

  14. Lee, J., Lilly, G.D., Doty, R.C., Podsiadlo, P. & Kotov, N.A. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 5, 1213–1221 (2009).

    CAS  Google Scholar 

  15. Kienhuis, A.S. et al. Comparison of coumarin-induced toxicity between sandwich-cultured primary rat hepatocytes and rats in vivo: a toxicogenomics approach. Drug Metab Dispos 34, 2083–2090 (2006).

    Article  CAS  Google Scholar 

  16. Holy, C.E., Shoichet, M.S. & Davies, J.E. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 51, 376–382 (2000).

    Article  CAS  Google Scholar 

  17. Papadaki, M. et al. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol 280, H168–178 (2001).

    CAS  Google Scholar 

  18. Hubatsch, I., Ragnarsson, E.G. & Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2, 2111–2119 (2007).

    Article  CAS  Google Scholar 

  19. Artursson, P., Palm, K. & Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46, 27–43 (2001).

    Article  CAS  Google Scholar 

  20. Reis, J.M., Sinko, B. & Serra, C.H. Parallel artificial membrane permeability assay (PAMPA)-Is it better than Caco-2 for human passive permeability prediction? Mini Rev Med Chem 10, 1071–1076 (2010).

    Article  CAS  Google Scholar 

  21. Niu, X., de Graaf, I.A. & Groothuis, G.M. Evaluation of the intestinal toxicity and transport of xenobiotics utilizing precision-cut slices. Xenobiotica 43, 73–83 (2013).

    Article  CAS  Google Scholar 

  22. Costello, C.M. et al. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm 11, 2030–2039 (2014).

    Article  CAS  Google Scholar 

  23. Yu, J., Peng, S., Luo, D. & March, J.C. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol Bioeng 109, 2173–2178 (2012).

    Article  CAS  Google Scholar 

  24. Kim, S.H. et al. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr Biol (Camb) 6, 1122–1131 (2014).

    Article  CAS  Google Scholar 

  25. Gomez-Lechon, M.J., Tolosa, L., Conde, I. & Donato, M.T. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 10, 1553–1568 (2014).

    Article  CAS  Google Scholar 

  26. Li, N. et al. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng Part C Methods 19, 708–719 (2013).

    Article  CAS  Google Scholar 

  27. Goke, M., Kanai, M. & Podolsky, D.K. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am J Physiol 274, G809–818 (1998).

    CAS  Google Scholar 

  28. Visco, V. et al. Human colon fibroblasts induce differentiation and proliferation of intestinal epithelial cells through the direct paracrine action of keratinocyte growth factor. J Cell Physiol 220, 204–213 (2009).

    Article  CAS  Google Scholar 

  29. Shah, P., Jogani, V., Bagchi, T. & Misra, A. Role of Caco-2 cell monolayers in prediction of intestinal drug absorption. Biotechnol Prog 22, 186–198 (2006).

    Article  CAS  Google Scholar 

  30. Masungi, C. et al. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds. J Pharm Sci 93, 2507–2521 (2004).

    CAS  Google Scholar 

  31. Wang, L., Murthy, S.K., Fowle, W.H., Barabino, G.A. & Carrier, R.L. Influence of micro-well biomimetic topography on intestinal epithelial Caco-2 cell phenotype. Biomaterials 30, 6825–6834 (2009).

    Article  CAS  Google Scholar 

  32. Wang, L., Murthy, S.K., Barabino, G.A. & Carrier, R.L. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials 31, 7586–7598 (2010).

    Article  CAS  Google Scholar 

  33. Chi, M. et al. A microfluidic cell culture device (muFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed Microdevices 17, 9966 (2015).

    Article  Google Scholar 

  34. Costello, C.M. et al. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol Bioeng 111, 1222–1232 (2014).

    Article  CAS  Google Scholar 

  35. Grenier, B. & Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins (Basel) 5, 396–430 (2013).

    Article  CAS  Google Scholar 

  36. International Transporter, C. et al. Membrane transporters in drug development. Nat Rev Drug Discov 9, 215–236 (2010).

    Article  Google Scholar 

  37. Zhu, C.J. et al. Stereoselective Regulation of P-gp Activity by Clausenamide Enantiomers in Caco-2, KB/ KBv and Brain Microvessel Endothelial Cells. PLoS One 10, e0135866 (2015).

    Article  Google Scholar 

  38. Press, B. & Di Grandi, D. Permeability for intestinal absorption: Caco-2 assay and related issues. Curr Drug Metab 9, 893–900 (2008).

    Article  CAS  Google Scholar 

  39. Mouly, S. & Paine, M.F. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res 20, 1595–1599 (2003).

    Article  CAS  Google Scholar 

  40. Bachmeier, C.J., Beaulieu-Abdelahad, D., Ganey, N.J., Mullan, M.J. & Levin, G.M. Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine. Biopharm Drug Dispos 32, 233–244 (2011).

    Article  CAS  Google Scholar 

  41. Lennernäs, H., Palmb, K., Fagerholma, U. & Artursson, P. Comparison between active and passive drug transport in human intestinal epithelial (caco-2) cells in vitro and human jejunum in vivo. Int. J. Pharm 127, 103–107 (1996).

    Article  Google Scholar 

  42. Hidalgo, I.J., Raub, T.J. & Borchardt, R.T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96, 736–749 (1989).

    Article  CAS  Google Scholar 

  43. Pusch, J. et al. The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Biomaterials 32, 7469–7478 (2011).

    Article  CAS  Google Scholar 

  44. Yumoto, R. et al. Pharmacokinetic interaction of cytochrome P450 3A-related compounds with rhodamine 123, a P-glycoprotein substrate, in rats pretreated with dexamethasone. Drug Metab Dispos 29, 145–151 (2001).

    CAS  Google Scholar 

  45. Fleisher, D., Stewart, B.H. & Amidon, G.L. Design of prodrugs for improved gastrointestinal absorption by intestinal enzyme targeting. Methods Enzymol 112, 360–381 (1985).

    Article  CAS  Google Scholar 

  46. Ferruzza, S., Rossi, C., Scarino, M.L. & Sambuy, Y. A protocol for differentiation of human intestinal Caco-2 cells in asymmetric serum-containing medium. Toxicol In Vitro 26, 1252–1255 (2012).

    Article  CAS  Google Scholar 

  47. Matsumoto, H. et al. Biosynthesis of alkaline phosphatase during differentiation of the human colon cancer Cell line Caco-2. Gastroenterology 98, 1199–1207 (1990).

    Article  CAS  Google Scholar 

  48. Pinto, M. et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biology of the Cell 47, 323–330 (1983).

    Google Scholar 

  49. Fan, M.Z., Stoll, B., Jiang, R. & Burrin, D.G. Enterocyte digestive enzyme activity along the crypt-villus and longitudinal axes in the neonatal pig small intestine. J Anim Sci 79, 371–381 (2001).

    Article  CAS  Google Scholar 

  50. Kim, H.J., Huh, D., Hamilton, G. & Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    Article  CAS  Google Scholar 

  51. Thelen, K. & Dressman, J.B. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol 61, 541–558 (2009).

    Article  CAS  Google Scholar 

  52. Bohets, H. et al. Strategies for absorption screening in drug discovery and development. Curr Top Med Chem 1, 367–383 (2001).

    Article  CAS  Google Scholar 

  53. Hua, F. et al. Transport and uptake of clausenamide enantiomers in CYP3A4-transfected Caco-2 cells: An insight into the efflux-metabolism alliance. Biochem Pharmacol 98, 224–230 (2015).

    Article  CAS  Google Scholar 

  54. Tran, C.D., Timmins, P., Conway, B.R. & Irwin, W.J. Investigation of the coordinated functional activities of cytochrome P450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells. J Pharm Sci 91, 117–128 (2002).

    Article  CAS  Google Scholar 

  55. Kim, H.J. & Ingber, D.E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5, 1130–1140 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungsu Park or Jong Hwan Sung.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, B., Shim, K.Y., Ha, S.K. et al. Three-dimensional in vitro gut model on a villi-shaped collagen scaffold. BioChip J 11, 219–231 (2017). https://doi.org/10.1007/s13206-017-1307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-1307-8

Keywords

Navigation