Skip to main content
Log in

Gene expression profiles of human neuroblastoma cells exposed to CuO nanoparticles and Cu ions

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles (CuO NPs) are one of the most toxic metal oxide nanoparticles, but they have a wide range of applications in the manufacture of industrial and consumer products. While their beneficial aspects are widely acknowledged, the toxic effects of CuO NPs and Cu ions on the neuronal system may limit their use. Here, we propose a molecular mechanism underlying the response of human neuroblastoma SH-SY5Y cells to CuO NP and Cu ion exposure based on cDNA microarray data. SH-SY5Y cells exposed to CuO NPs and CuCl2 for 24 hours showed concentration-dependent cell death with similar IC50 values. The expression level of up-regulated genes in CuCl2-exposed cells was significantly higher than in CuO NP-exposed cells. CuO NP-exposed cells arrested the cell cycle in the G1/S/G2/M phases as a result of an up-regulation of INK4d, CYCE, RB, CDC6, CDC45, GADD45, and BUB1, while CuCl2-exposed cells mostly arrested the cell cycle in the G2/M phases as a result of CYCA, CYCB, CDK1, CDC20, PIK1, and BUB1 up-regulation. Our results suggest that the IC50 value had no significant relation with gene expression changes because the gene expression study may be in part due to cytotoxic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pal, J. & Pal, T. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale 7, 14159–14190 (2015).

    Article  CAS  Google Scholar 

  2. Sun, Y.F. et al. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 12, 2610–2631 (2012).

    Article  CAS  Google Scholar 

  3. Badawy, W.A. et al. A review on solar cells from Sisingle crystals to porous materials and quantum dots. J. Adv. Res. 6, 123–132 (2015).

    Article  CAS  Google Scholar 

  4. Kidowaki, H. et al. Fabrication and characterization of CuO-based solar cells. J. Mat. Sci. Res. 1, 138–143 (2012).

    CAS  Google Scholar 

  5. Gupta, K. et al. Synthesis of La 0.67 Sr 0.33 MnO3 and polyaniline nanocomposite with its electrical and magneto-transport properties. J. Appl. Phys. 107, 073704 (2010).

    Article  Google Scholar 

  6. Sundar, S. & Prajapati, V.K. et al. Drug targeting to infectious diseases by nanoparticles surface functionalized with special biomolecules. Curr. Med. Chem. 19, 3196–3202 (2012).

    Article  CAS  Google Scholar 

  7. Chang, Y.N. et al. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5, 2850–2871 (2012).

    Article  CAS  Google Scholar 

  8. Bondarenko, O. et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87, 1181–1200 (2013).

    Article  CAS  Google Scholar 

  9. Zhou, K. et al. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 17, 3939–3943 (2006).

    Article  CAS  Google Scholar 

  10. Chang, H. et al. Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev. Adv. Mater. Sci. 10, 128–132 (2005).

    CAS  Google Scholar 

  11. Adamcakova-Dodd, A. et al. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part. Fibre Toxicol. 11, 15 (2014).

    Article  Google Scholar 

  12. Guo, X. & Chen, T. Progress in genotoxicity evaluation of engineered nanomaterials. INTECH, DOI: 10.5772/61013, 141–160 (2015).

    Google Scholar 

  13. Bondarenko, O. et al. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 169, 81–89 (2012).

    Article  CAS  Google Scholar 

  14. Aruoja, V. et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 407, 1461–1468 (2009).

    Article  CAS  Google Scholar 

  15. Shafagh, M. et al. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran. J. Basic Med. Sci. 18, 993–1000 (2015).

    Google Scholar 

  16. Nations, S. et al. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83, 1053–1061 (2011).

    Article  CAS  Google Scholar 

  17. Sandhya Rani, V. et al. Pulmonary toxicity of Copper oxide (CuO) nanoparticles in rats. J. Med. Sci. 13, 571–577 (2013).

    Article  CAS  Google Scholar 

  18. Hanagata, N. et al. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 5, 9326–9338 (2011).

    Article  CAS  Google Scholar 

  19. Jomova, K. & Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65–87 (2011).

    Article  CAS  Google Scholar 

  20. Wang, Z. et al. Biological and environmental transformations of Copper-based nanomaterials. ACS Nano 7, 8715–8727 (2013).

    Article  CAS  Google Scholar 

  21. Xu, L. et al. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J. Nanobiotechnology 10, 16 (2012).

    Article  CAS  Google Scholar 

  22. Kumaran, R.S. et al. Quantitation of oxidative stress gene expression in MCF-7 human cell lines treated with water-dispersible CuO nanoparticles. Appl. Biochem. Biotechnol. 173, 731–740 (2014).

    Article  CAS  Google Scholar 

  23. Siddiqui, M.A. et al. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLOS ONE 8, e69534 (2013).

    Article  CAS  Google Scholar 

  24. Li, F. et al. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles. BMC Biotechnol. 7, 66 (2007).

    Article  Google Scholar 

  25. Yang, Y. et al. Global gene expression analysis of the effects of gold nanoparticles on human dermal fibroblasts. J. Biomed. Nanotechnol. 6, 234–246 (2010).

    Article  CAS  Google Scholar 

  26. Masseroli, M. & Pinciroli, F. Using gene ontology and genomic controlled vocabularies to analyze highthroughput gene lists: Three tool comparison. Comput. Biol. Med. 36, 731–747 (2006).

    CAS  Google Scholar 

  27. Kim, J.A. et al. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotechnol. 7, 62–68 (2012).

    Article  CAS  Google Scholar 

  28. Cunningham, J.J. et al. The cyclin-dependent kinase inhibitors p19Ink4d and p27Kip1 are coexpressed in select retinal cells and act cooperatively to control cell cycle exit. Mol. Cell Neurosci. 19, 359–374 (2002).

    Article  CAS  Google Scholar 

  29. Tourigny, M.R. et al. CDK inhibitor p18INK4c is required for the generation of functional plasma cells. Immunity 17, 179–189 (2002).

    Article  CAS  Google Scholar 

  30. Garcia-Bustos, J.F. et al. PIK1, an essential phosphatidylinositol 4-kinase associated with the yeast nucleus. EMBO J. 13, 2352–2361 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Ik Yang or Eun-Min Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, SW., Oh, MS., Yang, S.I. et al. Gene expression profiles of human neuroblastoma cells exposed to CuO nanoparticles and Cu ions. BioChip J 10, 140–149 (2016). https://doi.org/10.1007/s13206-016-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0209-5

Keywords

Navigation