Skip to main content
Log in

Numerical simulation of droplet dynamic behaviors in a convergent microchannel

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Microfluidic devices are of high efficiency for the coalescence and manipulation of monodispersed droplets. Numbers of microfluidic applications involve the control of droplets through networks of convergent or divergent junctions. The convergent microchannels are widely applied in transporting DNA and controlling other chemical and biological reactions. But there are still some problems unsolved such as that how to merge droplets more efficiently and how to guarantee the stability of the droplet in a convergent microchannel. In this work, numerical method is used to investigate the dynamic properties of the water microdroplets suspended in the convergent microchannel filled with oil. The moving of microdroplets in the convergent microchannel is driven by the initial droplet velocity. The surface tension is taken into account in the Navier-Stokes equations. The microchannel size parameter “Da” is firstly proposed to describe the convergent microchannel geometric characteristics and through which a regime map is created to classify droplets states into total coalescence regime, partial coalescence regime and no coalescence regime respectively. The dynamic behaviors of the droplets suspended in the convergent microchannel are discussed in detail. This work would contribute to the design of convergent microchannels for better biochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christopher, G.F. et al. Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip 9, 1102–1109 (2009).

    Article  CAS  Google Scholar 

  2. Chokkalingam, V. et al. Optimized droplet-based microfluidics scheme for sol gel reactions. Lab Chip 10, 1700–1705 (2010).

    Article  CAS  Google Scholar 

  3. Um, E. & Park, J.K. A microfluidic abacus channel for controlling the addition of droplets. Lab Chip 9, 207–212 (2009).

    Article  CAS  Google Scholar 

  4. Teh, S.Y., Lin, R., Hung, L.H. & Lee, A.P. Droplet microfluidics. Lab Chip 8, 198–220 (2008).

    Article  CAS  Google Scholar 

  5. Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2012).

    Article  Google Scholar 

  6. Tan, Y.C., Fisher, J.S., Lee, A.I., Cristini, V. & Lee, A.P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4, 292–298 (2004).

    Article  CAS  Google Scholar 

  7. Jin, B.J. & Yoo, J.Y. Visualization of droplet merging in microchannels using micro-PIV. Exp. Fluids 52, 235–245 (2012).

    Article  CAS  Google Scholar 

  8. Kuo, C.Y. & Pan, C. The effect of cross-section design of rectangular microchannels on convective steam condensation. J. Micromech. Microeng. 19, 035017 (2009).

    Article  Google Scholar 

  9. Yobas, L., Martens, S., Ong, W.L. & Ranganathan, N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6, 1073–1079 (2006).

    Article  CAS  Google Scholar 

  10. Köhler, J.M. et al. Digital reaction technology by micro segmented flow-components, concepts and applications. J. Chem. Eng. 101, 201–216 (2004).

    Article  Google Scholar 

  11. Garstecki, P., Stone, H.A. & Whitesides, G.M. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Phys. Rev. Lett. 94, 164501 (2005).

    Article  Google Scholar 

  12. Hung, L.H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6, 174–178 (2006).

    Article  CAS  Google Scholar 

  13. Tan, Y.C., Ho, Y.L. & Lee, A.P. Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid Nanofluidics 3, 495–499 (2007).

    Article  Google Scholar 

  14. Lee, D. & Weitz, D.A. Nonspherical colloidosomes with multiple compartments from double emulsions. Small 5, 1932–1935 (2009).

    Article  CAS  Google Scholar 

  15. Li, J., Chen, H. & Stone, H.A. Breakup of double emulsion droplets in a tapered nozzle. Langmuir 27, 4324–4327 (2011).

    Article  CAS  Google Scholar 

  16. Aubry, G. et al. A multicolor microfluidic droplet dye laser with single mode emission. Appl. Phys. Lett. 98, 111111–111111-3 (2011).

    Article  Google Scholar 

  17. Chen, B., Guo, F. & Xiang, H. Visualization study of motion and deformation of red blood cells in a microchannel with straight, divergent and convergent sections. J. Biol. Phys. 37, 429–440 (2011).

    Article  Google Scholar 

  18. Jose, B.M. & Cubaud, T. Droplet arrangement and coalescence in diverging/converging microchannels. Microfluid Nanofluidics 12, 687–696 (2012).

    Article  CAS  Google Scholar 

  19. Chokkalingam, V. et al. Template free preparation of mesoporous silica spheres through optimized microfluidics. Chem. Phys. Chem. 11, 2091–2095 (2010).

    Article  CAS  Google Scholar 

  20. Guo, M.T., Rotem, A., Heyman, J.A. & Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 12, 2146–2155 (2012).

    Article  CAS  Google Scholar 

  21. Leclerc, E., Kinoshita, H., Fujii, T. & Barthès-Biesel, D. Transient flow of microcapsules through convergent divergent microchannels. Microfluid Nanofluidics 12, 761–770 (2012).

    Article  CAS  Google Scholar 

  22. Nguyen, H.B. & Chen, J.C. Effect of slippage on the thermocapillary migration of a small droplet. Biomicrofluidics 6, 012809 (2012).

    Article  Google Scholar 

  23. Bashir, S., Rees, J.M. & Zimmerman, W.B. Simulations of microfluidic droplet formation using the twophase level set method. Chem. Eng. Sci. 66, 4733–4741 (2011).

    Article  CAS  Google Scholar 

  24. Leng, C.A., Rowlinson, J.S. & Thompson, S.M. The gas-liquid surface of the penetrable sphere model. Proc. R. Soc. London, Ser. A 352, 1–23 (1976).

    Article  CAS  Google Scholar 

  25. Olsson, E. & Kreiss, G. A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005).

    Article  Google Scholar 

  26. Olsson, E., Kreiss, G. & Zahedi, S. A conservative level set method for two phase flow II. J. Comput. Phys. 225, 785–807 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Guo, D., Luo, J. et al. Numerical simulation of droplet dynamic behaviors in a convergent microchannel. BioChip J 7, 325–334 (2013). https://doi.org/10.1007/s13206-013-7403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7403-5

Keywords

Navigation