Skip to main content
Log in

Identification of potential molecular biomarkers in response to thioredoxin reductase 1 deficiency under nickel exposure

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Nickel (II) is a ubiquitous environmental contaminant and it is known to be a highly toxic metal. The level of nickel in the environment has been raised with advances in industrialization and the role of nickel in human diseases is of increasing concern. Thioredoxin reductase 1 (Trr 1) is one of major redox factors having a potential role in cellular defense system against exposure to environmental toxicants. In this study, we investigated the protective roles of the Trr 1 against nickel-induced DNA damage. We found significantly higher amounts of DNA strand break in Trr 1 silencing cells compared to Trr 1 wild-type cells under nickel exposure, using γ-H2AX immunofluorescence staining. We also identified the potential molecular biomarkers that participated in gene-environment interaction between Trr 1 deficiency and nickel exposure via microarray analysis. In particular, seven upregulated genes (AHNAK, FZR1, LGALS7, PLD1, PPM1F, RHOB and SFRP1) and three down-regulated genes (IFITM1, MAPK8 and RCN1), whose functions are principally in toxicity-prone as well as cytoprotection processes, including cell proliferation, cell survival, apoptosis, inflammation and DNA repair. Our findings demonstrate gene-environment interaction between Trr 1 deficiency and nickel-induced toxicity, as evidence that insufficient of redox factor Trr 1 accelerated DNA lesions caused by nickel exposure. These results suggest that the candidate genes might be further useful in the establishment of Trr 1-mediated strategies by which modulate cellular defense against environmental toxicants, nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grandjean, P., Andersen, O. & Nielsen, G.D. Carcinogenicity of occupational nickel exposures: an evaluation of the epidemiological evidence. Am. J. Ind. Med. 13, 193–209 (1988).

    Article  CAS  Google Scholar 

  2. Sunderman, F.W. Jr. Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann. Clin. Lab. Sci. 31, 3–24 (2001).

    CAS  Google Scholar 

  3. Kasprzak, K.S., Sunderman, F.W. Jr. & Salnikow, K. Nickel carcinogenesis. Mutat. Res. 533, 67–97 (2003).

    Article  CAS  Google Scholar 

  4. Robison, S.H., Cantoni, O. & Costa, M. Analysis of metal-induced DNA lesions and DNA-repair replication in mammalian cells. Mutat. Res. 131, 173–181 (1984).

    CAS  Google Scholar 

  5. Patierno, S.R. & Costa, M. DNA-protein cross-links induced by nickel compounds in intact cultured mammalian cells. Chem. Biol. Interact. 55, 75–91 (1985).

    Article  CAS  Google Scholar 

  6. Sen, P. & Costa, M. Induction of chromosomal damage in Chinese hamster ovary cells by soluble and particulate nickel compounds: preferential fragmentation of the heterochromatic long arm of the X-chromosome by carcinogenic crystalline NiS particles. Cancer Res. 45, 2320–2325 (1985).

    CAS  Google Scholar 

  7. Zhong, Z.J., Troll, W., Koenig, K.L. & Frenkel, K. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes. Cancer Res. 50, 7564–7570 (1990).

    CAS  Google Scholar 

  8. Kasprzak, K.S. The role of oxidative damage in metal carcinogenicity. Chem. Res. Toxicol. 4, 604–615 (1991).

    Article  CAS  Google Scholar 

  9. Kawanishi, S. et al. Oxidative DNA damage in cultured cells and rat lungs by carcinogenic nickel compounds. Free Radic. Biol. Med. 31, 108–116 (2001).

    Article  CAS  Google Scholar 

  10. Kasprzak, K.S. & Hernandez, L. Enhancement of hydroxylation and deglycosylation of 2′-deoxyguanosine by carcinogenic nickel compounds. Cancer Res. 49, 5964–5968 (1989).

    CAS  Google Scholar 

  11. Mustacich, D. & Powis, G. Thioredoxin reductase. Biochem J. 346, 1–8 (2000).

    Article  CAS  Google Scholar 

  12. Berggren, M. et al. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res. 16, 3459–3466 (1996).

    CAS  Google Scholar 

  13. Williams, C.H. et al. Thioredoxin reductase: two modes of catalysis have evolved. Eur. J. Biochem. 267, 6110–6119 (2000).

    Article  CAS  Google Scholar 

  14. Oberley, T.D., Verwiebe, E., Zhong, W., Kang, S.W. & Rhee, S.G. Localization of the thioredoxin system in normal rat kidney. Free Radic. Biol. Med. 30, 412–424 (2001).

    Article  CAS  Google Scholar 

  15. Hirota, K. et al. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem. Biophys. Res. Commun. 274, 177–182 (2000).

    Article  CAS  Google Scholar 

  16. Karimpour, S. et al. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene 21, 6317–6327 (2002).

    Article  CAS  Google Scholar 

  17. Koizumi, S. & Yamada, H. DNA microarray analysis of altered gene expression in cadmium-exposed human cells. J. Occup. Health 45, 331–334 (2003).

    Article  CAS  Google Scholar 

  18. Carinci, F. et al. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25, 215–228 (2004).

    Article  CAS  Google Scholar 

  19. Boverhof, D.R. & Zacharewski, T.R. Toxicogenomics in risk assessment: applications and needs. Toxicol. Sci. 89, 352–360 (2006).

    Article  CAS  Google Scholar 

  20. Werner, T. Bioinformatics applications for pathway analysis of microarray data. Curr. Opin. Biotechnol. 19, 50–54 (2008).

    Article  CAS  Google Scholar 

  21. Snow, E.T. Metal carcinogenesis: mechanistic implications. Pharmacol. Ther. 53, 31–65 (1992).

    Article  CAS  Google Scholar 

  22. Ercal, N., Gurer-Orhan, H. & Aykin-Burns, N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 1, 529–539 (2001).

    Article  CAS  Google Scholar 

  23. Kim, H.L. & Seo, Y.R. Synergistic genotoxic effect between gene and environmental pollutant: Oxidative DNA damage induced by thioredoxin reductase 1 silencing under nickel treatment. Mol. Cell. Toxicol. 7, 251–257 (2011).

    Article  CAS  Google Scholar 

  24. Zhou, C. et al. DNA damage evaluated by gamma H2AX foci formation by a selective group of chemical/physical stressors. Mutat. Res. 604, 8–18 (2006).

    CAS  Google Scholar 

  25. Hieda, Y., Tsukita, S. & Tsukita, S. A new high molecular mass protein showing unique localization in desmosomal plaque. J. Cell Biol. 109, 1511–1518 (1989).

    Article  CAS  Google Scholar 

  26. Salim, C., Boxberg, Y.V., Alterio, J., Féréol, S. & Nothias, F. The giant protein AHNAK involved in morphogenesis and laminin substrate adhesion of myelinating Schwann cells. Glia 57, 535–549 (2009).

    Article  Google Scholar 

  27. Lu, Z. et al. Phospholipase D and RalA cooperate with the epidermal growth factor receptor to transform 3Y1 rat fibroblasts. Mol. Cell Biol. 20, 462–467 (2000).

    Article  CAS  Google Scholar 

  28. Hui, L. et al. holipase D elevates the level of MDM2 and suppresses DNA damage-induced increases in p53. Mol. Cell Biol. 24, 5677–5686 (2004).

    Article  CAS  Google Scholar 

  29. Fritz, G. & Kaina, B. rhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase. J. Biol. Chem. 272, 30637–30644 (1997).

    Article  CAS  Google Scholar 

  30. Saini, S. et al. Functional significance of secreted Frizzled-related protein 1 in metastatic renal cell carcinomas. Cancer Res. 69, 6815–6822 (2009).

    Article  CAS  Google Scholar 

  31. Abba, M.C. et al. Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res. 6, R499–R513 (2004).

    Article  CAS  Google Scholar 

  32. Yang, G., Xu, Y., Chen, X. & Hu, G. IFITM1 plays an essential role in the antiproliferative action of interferon-gamma. Oncogene 26, 594–603 (2007).

    Article  CAS  Google Scholar 

  33. Cellurale, C. et al. Role of JNK in a Trp53-dependent mouse model of breast cancer. PLoS One 5, e12469 (2010).

    Article  Google Scholar 

  34. Ozawa, M. Cloning of a human homologue of mouse reticulocalbin reveals conservation of structural domains in the novel endoplasmic reticulumresident Ca (2+)-binding protein with multiple EF-hand motifs. J. Biochem. 117, 1113–1119 (1995).

    CAS  Google Scholar 

  35. Yoshida, Y. et al. Limited expression of reticulocalbin-1 in lymphatic endothelial cells in lung tumor but not in normal lung. Biochem. Biophys. Res. Commun. 405, 610–614 (2011).

    Article  CAS  Google Scholar 

  36. Canguilhem, B. et al. RhoB protects human keratinocytes from UVB-induced apoptosis through epidermal growth factor receptor signaling. J. Biol. Chem. 280, 43257–43263 (2005).

    Article  CAS  Google Scholar 

  37. Bodine, P.V. et al. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J. Cell. Biochem. 96, 1212–1230 (2005).

    Article  CAS  Google Scholar 

  38. Johnson, G.L. & Nakamura, K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim. Biophys. Acta 1773, 1341–1348 (2007).

    Article  CAS  Google Scholar 

  39. d’Errico, A., Malats, N., Vineis, P. & Boffetta, P. Review of studies of selected metabolic polymorphisms and cancer. IARC Sci. Publ. 148, 323–393 (1999).

    Google Scholar 

  40. Peng, X. et al. Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinformatics 4, 1–9 (2003).

    Article  Google Scholar 

  41. Nikitin, A., Egorov, S., Daraselia, N. & Mazo, I. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 19, 2155–2157 (2003).

    Article  CAS  Google Scholar 

  42. Kwon, J.Y., Kim, J.M., Ji, Y.H. & Seo, Y.R. Genomewide microarray investigation of molecular targets and signaling networks in response to high-LET neutron in in vivo-mimic spheroid of human carcinoma. Mol. Cell. Toxicol. 8, 9–18 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Rok Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.L., Seo, Y.R. Identification of potential molecular biomarkers in response to thioredoxin reductase 1 deficiency under nickel exposure. BioChip J 6, 157–164 (2012). https://doi.org/10.1007/s13206-012-6208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6208-2

Keywords

Navigation