Skip to main content
Log in

Biodegradation of agave Comiteco bagasse by Pleurotus spp.: a source of cellulases useful in hydrolytic treatment to produce reducing sugars

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study aimed to determine the production parameters of five strains of Pleurotus spp. during their cultivation on agave Comiteco bagasse, as well as the feasibility of using cellulolytic extracts to produce reducing sugars in the same bagasse. After cultivation, the basidiome production parameters varied between 41.2 and 65.7% (biological efficiency), 0.17 and 0.30 (yield), 0.60 and 0.90% (production rate), 16.4 and 41.1% (Bioconversion) and 9.4 and 21.3 g (mean mushroom weight). At day 15 of growth, P. djamor showed the highest β-glucosidase activity (43.95 ± 4.5 IU/g); on day 33. The same strain had the highest endoglucanase activity (21.12 ± 0.5 IU/ml). Both extracts were partially purified, and the kinetic parameters Vmax and Km were estimated (20.83 µmole/ml sec and 232.01 µmole/ml for β-glucosidase and 685.01 µmole/ml sec and 1,240.34 µmole/ml for endoglucanase). In the enzymatic hydrolysis assay, the highest concentration of reducing sugars (43.13 ± 1.09 g/L; 0.21 g/g bagasse) was obtained by a mixture of the two partially purified extracts acting synergistically after 48 h and with a pH adjustment. The results suggest that the use of agave Comiteco bagasse for cultivating edible mushrooms while obtaining cellulolytic extracts is an alternative treatment for waste reduction and valorization of agro-industrial by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available on request.

References

  • Ahmed S, Bashir A, Saleem H, Saadia M, Jamil A (2009) Production and purification of cellulose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak J Bot 41(3):1411–1419

    CAS  Google Scholar 

  • Akter M, Halawani RF, Aloufi FA, Taleb MA, Akter S, Mahmood S (2022) Utilization of agro-industrial wastes for the production of quality oyster mushrooms. Sustainability 14(2):994. https://doi.org/10.3390/su14020994

    Article  CAS  Google Scholar 

  • Albernas CY, Corsano G, Santos HR, González SE (2014) Análisis del tiempo de la hidrólisis enzimática del bagazo pretratado. Rev Cent Azúcar 41(2):89–95

    Google Scholar 

  • Alfonsel M, Negro MJ, Saez R, Martin C (1986) Actividad enzimática del complejo celulítico producido por Trichoderma reesei. Hidrólisis enzimática de la celulosa. Reporte técnico, Centro de investigaciones energéticas, medioambientales y tecnológicas. Accessed 21 May 2020 (Online)

  • Álvarez J, Sánchez C, Díaz R, Díaz GG (2016) Characterization of production of laccases, cellulases and xylanases of Pleurotus ostreatus grown on solid-state fermentation using an inert support. Rev Mex Ing Quim 15(2):323–331

    Article  Google Scholar 

  • Awad SAJ (2011) Sacarificación y fermentación simultánea para la producción de bioetanol de segunda generación, mediante pretratamientos alternativos: líquidos iónicos reciclados y hongos de pudrición Blanca. Dissertation, Universidad de Santiago de Chile

  • Baena A (2005) Aprovechamiento del bagazo del maguey verde (Agave salmiana) de la agroindustria del mezcal en San Luis Potosí para la producción de hongo ostra (Pleurotus ostreatus). Dessertation, Instituto Potosino de Investigación Científica y Tecnológica

  • Bailey MJ, Nevalainem KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol 3(2):153–157. https://doi.org/10.1016/0141-0229(81)90076-4

    Article  CAS  Google Scholar 

  • Bajzer Ž, Strehler EE (2012) About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics. Biochem Biophys Res Commun 417(3):982–985. https://doi.org/10.1016/j.bbrc.2011.12.051

    Article  CAS  PubMed  Google Scholar 

  • Balam CRJ, Duarte AS, Canché EG (2006) Obtención y caracterización de materiales compuestos de fibras de la “piña” de henequén y polipropileno. Rev Mex Ing Quím 5(1):39–44

    Google Scholar 

  • Barrios EBM, Moreno RL, Sánchez JE (2009) Composteo en cajones de madera como pretratamiento del sustrato para cultivar Pleurotus ostreatus. Rev Mex Mic 29:51–59

    Google Scholar 

  • Bernabé GT, Cayetano CM, Adán DA, Torres PMA (2004) Cultivo de Pleurotus pulmonarius sobre diversos subproductos agrícolas de Guerrero México. Scientia Fungorum 18:77–80. https://doi.org/10.33885/sf.2004.3.917

    Article  Google Scholar 

  • Bernardi E, Donini LP, Minotto E, Do-Nascimento SJ (2007) Cultivation of three Pleurotus (Jacq. Fr.) P Kumm species on pasteurized elephant grass (Pennisetum purpureum) substrate. Int J Med Mushrooms 9(34):373–378. https://doi.org/10.1615/IntJMedMushr.v9.i34.110

    Article  Google Scholar 

  • Bonilla HR, Armijos HA, Calderón BL (2015) Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Av Quim 10(1):79–82

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Carmona JE, Morales MTK, Mussatto SI, Castillo QD, Ríos GLJ (2017) Chemical, structural and functional properties of lechuguilla (Agave lechuguilla Torr.). Rev Mex Cienc For 8(42):100–122

    Google Scholar 

  • Cayetano CM, Mata G, Bernabé GT (2007) Cultivo de Pleurotus ostreatus y P. djamor sobre dos subproductos agrícolas en Guerrero. In: Sánchez JE, Martínez D, Mata G, Leal H (eds) El cultivo de setas Pleurotus spp. en México, 1st edn. El Colegio de la Frontera Sur, Tapachula, pp 113–122

  • Chairez AJ, Del-Valle JE, Ruíz LJ, Campos ÁGV, Martínez GR (2015) Uso del bagazo de Agave spp y hojas de maíz para cultivar el hongo Pleurotus ostreatus. Rev Mex Agroecosistemas 2(1):23–28

    Google Scholar 

  • Chaubey A, Dechariya P, Vyas D (2010) Suitability of various wastes for the cultivation of Pleurotus djamor. Mushroom Res 19(1):36–39

    Google Scholar 

  • Chen M, Zhao J, Xia L (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71(3):411–415. https://doi.org/10.1016/j.carbpol.2007.06.011

    Article  CAS  Google Scholar 

  • Chinedu SN, Nwinyi O, Okochi VI (2008) Properties of endoglucanase of Penicillium chrysogenum PCL501. Aust J Basic Appl Sci 2(3):738–746

    CAS  Google Scholar 

  • Córdova JRA, Gordillo DLL, Bello MR, Sánchez JE (2011) Use of spent substrate after Pleurotus pulmonarius cultivation for treatment of chlorothalonil containing wastewater. J Environ Manage 92(3):948–952. https://doi.org/10.1016/j.jenvman.2010.10.047

    Article  CAS  Google Scholar 

  • Cruz CY, Cadena CE, Arango TJC (2019a) Procesamiento de la Cascarilla de Cebada Cervecera por Vía Enzimática para la Obtención de Azúcares Fermentables. Inf Tecnol 30(4):41–50. https://doi.org/10.4067/S0718-07642019000400041

    Article  Google Scholar 

  • Cruz OR, Sánchez VJE, Amaya DL, Guillén NK, Calixto RMA (2019) Biodegradation of NSAIDs and their effect on the activity of ligninolytic enzymes from Pleurotus djamor. 3 Biotech 9(10):373. https://doi.org/10.1007/s13205-019-1904-4

    Article  Google Scholar 

  • Dündar A, Yildiz A (2009) A comparative study on Pleurotus ostreatus (Jacq.) P. Kumm cultivated on different agricultural lignocellulosic wastes. Turk J Biol 33(2):171–179. https://doi.org/10.3906/biy-0804-2

    Article  Google Scholar 

  • Elisashvili V, Penninckx M, Kachlishvili E, Asatiani M, Kvesitadze G (2006) Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels and tree leaves. Enzyme Microb Technol 38(7):998–1004. https://doi.org/10.1016/j.enzmictec.2005.08.033

    Article  CAS  Google Scholar 

  • Funaki DRM, Ducca F, Ferdinandi DM, De-Costa ZP, Rosado FR (2010) Análise de substratos alternativos para o cultivo de Pleurotus ostreatoroseus e Pleurotus florida. Rev em Agronegocio e Meio Ambient 3(2):249–261. https://doi.org/10.17765/2176-9168.2010v3n2p249-261

    Article  Google Scholar 

  • Gaitán HR, Salmones D, Pérez MR, Mata G (2009) Evaluación de la eficiencia biológica de cepas de Pleurotus pulmonarius en paja de cebada fermentada. Rev Mex Mic 30:63–71

    Google Scholar 

  • Galindo HKL, Tapia RA, Alatriste MF, Celis LB, Arreola VJ, Razo FE (2018) Enhancing saccharification of Agave tequilana bagasse by oxidative delignification and enzymatic synergism for the production of hydrogen and methane. Int J Hydrog Energy 43(49):22116–22125. https://doi.org/10.1016/j.ijhydene.2018.10.071

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  • Goldbeter A (2013) Oscillatory enzyme reactions and Michaelis-Menten kinetics. FEBS Let 587(17):2778–2784. https://doi.org/10.1016/j.febslet.2013.07.031

    Article  CAS  Google Scholar 

  • Goyal M, Soni G (2011) Production and characterization of cellulolytic enzymes by Pleurotus florida. Afr J Microbiol Res 5(10):1131–1136. https://doi.org/10.5897/AJMR10.192

    Article  CAS  Google Scholar 

  • Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and wastebiomass. Trends Biochem Sci 41(7):633–645. https://doi.org/10.1016/j.tibs.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez RI, Moreno SN, Montoya D (2015) Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Rev Iberoam Micol 32(1):1–12. https://doi.org/10.1016/j.riam.2013.10.009

    Article  Google Scholar 

  • Han L, Feng J, Zhang S, Ma Z, Wang Y, Zhang X (2012) Alkali pretreated of wheat straw and its enzymatic hydrolysis. Braz J Microbiol 43:53–61. https://doi.org/10.1590/S1517-83822012000100006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MT, Khatun MHA, Sajib MAM, Rahman MM, Rahman SM, Roy M, Miah MN, Ahmed KU (2015) Effect of wheat bran supplement with sugarcane bagasse on growth, yield and proximate composition of pink oyster mushroom (Pleurotus djamor). Am J Food Technol 3(6):150–157. https://doi.org/10.12691/ajfst-3-6-2

    Article  CAS  Google Scholar 

  • Heredia SA, Esparza IEL, Romero BL, Cabral AF, Bañuelo VR (2014) Bagazos de Agave salmiana y Agave weberi utilizados como sustrato para producir Pleurotus ostreatus. Rev Iberoam Cienc 1(5):103–110

    Google Scholar 

  • Hernández RD, Sánchez JE, Nieto MG, Márquez FJ (2006) Degradation of endosulfan during substrate preparation and cultivation of Pleurotus pulmonarius. World J Microbiol Biotechnol 22:753–760. https://doi.org/10.1007/s11274-005-9102-4

    Article  CAS  Google Scholar 

  • Isikhuemhen OS, Mikiashvilli NA (2009) Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids. J Ind Microbiol Biotechnol 36(11):1353–1362. https://doi.org/10.1007/s10295-009-0620-1

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Roy N (2018) Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res Notes 11(1):1–6. https://doi.org/10.1186/s13104-018-3558-4

    Article  CAS  Google Scholar 

  • Khalil MI, Hoque MM, Basunia MA, Alam N, Khan MA (2011) Production of cellulase by Pleurotus ostreatus and Pleurotus sajor-caju in solid state fermentation of lignocellulosic biomass. Turk J Agric For 35(4):333–341. https://doi.org/10.3906/tar-1002-684

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. https://doi.org/10.1007/s10295-008-0327-8

    Article  CAS  PubMed  Google Scholar 

  • Kurt S, Buyukalaca S (2010) Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresour Technol 101(9):3164–3169. https://doi.org/10.1016/j.biortech.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  • Láinez M, Ruiz HA, Castro LAA, Martínez HS (2018) Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass Bioenergy 118:133–140. https://doi.org/10.1016/j.biombioe.2018.08.012

    Article  CAS  Google Scholar 

  • Lara HC, Grajales LA, Ruiz CMA, Ventura CC, Gutiérrez MFA, Ruiz VVM, Archila MA (2017) Agave americana honey fermentation by Kluyveromyces marxianus strain for “comiteco” production, a spirit from mexican southeast. Rev Mex Ing Quím 16(3):771–779

    Google Scholar 

  • Lim SH, Lee YH, Kang HW (2013) Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from Oyster mushrooms Pleurotus spp. and potential use in dye decolorization. Mycobiology 41(4):214–220. https://doi.org/10.5941/MYCO.2013.41.4.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Sun MJ, Li JH, Xu QM, Yang B, Wang Q, Xie WJ, Sun SJ, Hu KH, Zhang LY (2018) Purification and characterization of xylanase from spent mushroom compost and its application in saccharification of biomass wastes. Bioresources 13(1):220–230

    CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666. https://doi.org/10.1021/ja01318a036

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van ZWH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macarrón LR (1992) Purificación y caracterización de endoglucanasa III de Trichoderma reesei “QM9414”. Dissertation, Universidad Complutense de Madrid

  • Mallek FH, Belghith H (2016) Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides. Carbohydr Res 419:41–50. https://doi.org/10.1016/j.carres.2015.10.014

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET (1965) Inhibition of cellulases. Annu Rev Phytopathol 3(1):85–102. https://doi.org/10.1146/annurev.py.03.090165.000505

    Article  CAS  Google Scholar 

  • Martínez AC, Balcázar LE, Dantán GE, Folch MJL (2008) Celulasas fúngicas: aspectos biológicos y aplicaciones en la industria energética. Rev Latinoam Microbiol 50(3–4):119–131

    Google Scholar 

  • Mata G, Salmones D, Savoie JM (2017) Lignocellulolytic enzymes from Pleurotus spp. In: Sánchez JE, Royse DJ (eds) The biology, cultivation and nutritional properties of Pleurotus spp. Mushrooms, 1st edn. El Colegio de la Frontera Sur, San Cristóbal de las Casas, pp 63–83

  • Medina DAP, Nuñez MFA, Ordoñes MS (2010) Obtención de enzimas celulasas por fermentación sólida de hongos para ser utilizadas en el proceso de obtención de bioalcohol de residuos del cultivo de banano. Rev Tecnol 23(1):81–88

    Google Scholar 

  • Megha S, Maragathavalli S, Brindha SV, Annadurai V, Gangwar SK, Karthikeyan V (2015) Isolation and purification of cellulase. Int J Sci Nat 6:474–479

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Moreno BAC (2020) Cultivo de Hongos comestibles Pleurotus djamor y Pleurotus ostreatus sobre sustrato de bagazo de Agave tequilana. Dissertation, Universidad Autónoma de Querétaro

  • Moreno L, Andrade R, Sanchez JE (2014) Biotechnological potential of ten Pleurotus djamor strains. In: Proceedings of the 8th international conference on mushroom biology and mushroom products, 1st edn. New Delhi, pp 262–270

  • Motato R, Mejía IA, León A (2006) Evaluación de los residuos agroindustriales de plátano (Musa paradisíaca) y aserrín de abarco (Cariniana piriformes) como sustratos para el cultivo del hongo Pleurotus djamor. Vitae 13:24–29

    Google Scholar 

  • Muswati C, Simango K, Tapfumaneyi L, Mutetwa M, Ngezimana W (2021) The effects of different substrate combinations on growth and yield of oyster mushroom (Pleurotus ostreatus). Int J Agron 2021:1–10. https://doi.org/10.1155/2021/9962285

    Article  Google Scholar 

  • Muthangya M, Mshandete AM, Hashim SO, Amana MJ, Kivaisi AK (2013) Evaluation of enzymatic activity during vegetative growth and fruiting of Pleurotus HK 37 on Agave sisalana saline solid waste. J Chem Biol Phys Sci 4(1):247–248

    Google Scholar 

  • Naranjo CDD, Alamilla BL, Gutiérrez LGF, Terres RE, Solorza FJ, Romero VS, Mora ER (2016) Isolation and characterization of cellulose obtained from Agave salmiana fibers using two acid-alkali extraction methods. Rev Mex Cienc Agric 7(1):31–43

    Google Scholar 

  • Ocara M, Vieille P, Carvajal L, Cruz R (2019) Los Hongos en la salud y la enfermedad. Parte I. Bol Micol. 33(2):1–9. https://doi.org/10.22370/bolmicol.2018.33.2.1370

    Article  Google Scholar 

  • Okereke OE, Akanya HO, Egwim EC (2017) Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization. Biocatal Agric Biotechnol 12:253–259. https://doi.org/10.1016/j.bcab.2017.10.018

    Article  Google Scholar 

  • Olajuyigbe FM (2017) Bioconversion of cellulose and simultaneous production of thermoactive exo-and endoglucanases by Fusarium oxysporum. Cellulose 24:4325–4336. https://doi.org/10.1007/s10570-017-1417-4

    Article  CAS  Google Scholar 

  • Páez MR (2003) Desarrollo de un proceso de purificación y obtención del ingrediente farmacéutico activo de la eritropoyetina recombinante. Dissertation, Centro de Ingeniería Genética y Biotecnología, Departamento de desarrollo de purificación

  • Paswall S, Mughal N, Bharti V, Mahajan S, Majeed M (2017) Evaluation of locally available substrates for sporocarps production of pink Pleurotus [Pleurotus djamor (Rumph. ex. Fr.) Boedijn] mushroom. Int J Curr Microbiol Appl Sci 6(12):1677–1684. https://doi.org/10.20546/ijcmas.2017.612.189

    Article  CAS  Google Scholar 

  • Pham TH, Quyen DT, Nghiem NM (2012) Purification and properties of an endoglucanase from Aspergillus niger VTCC-F021. Turk J Biol 36(6):694–701. https://doi.org/10.3906/biy-1202-30

    Article  CAS  Google Scholar 

  • Pol D, Laxman RS, Rao M (2012) Purification and biochemical characterization of endoglucanase from Penicillium pinophilum MS 20. Indian J Biochem Biophys 49(3):189–194

    CAS  PubMed  Google Scholar 

  • Potprommanee L, Wang XQ, Han YJ, Nyobe D, Peng YP, Huang Q, Chang KL (2017) Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS One 12(4):e0175004. https://doi.org/10.1371/journal.pone.0175004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quimio T (2001) Preparación de la semilla. In: Sánchez JE, Royse DJ (eds) La Biología y el Cultivo de Pleurotus spp, 1st edn. El Colegio de la Frontera Sur, San Cristóbal de las Casas, pp 125–137

  • Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Kruus K (2013) Cellulase lignin interactions. The role of carbohydrate-binding module and pH in non-productive binding. Enzyme Microb Technol 53(5):315–321. https://doi.org/10.1016/j.enzmictec.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  • Rajavat AS, Rai S, Pandiyan K, Kushwaha P, Choudhary P, Kumar M, Chakdar H, Singh A, Karthikeyan N, Bagul SY, Agnihotri A, Saxena AK (2019) Sustainable use of the spent mushroom substrate of Pleurotus florida for production of lignocellulolytic enzymes. J Basic Microbiol 60(2):173–184. https://doi.org/10.1002/jobm.201900382

    Article  CAS  PubMed  Google Scholar 

  • Ramírez CCR, Alonso GMS, Rigal L (2012) Valorización de residuos agroindustriales del tequila para alimentación de rumiantes. RCHSCFA 18(3):449–457. https://doi.org/10.5154/r.rchscfa.2011.08.059

    Article  Google Scholar 

  • Reddy GV, Ravindra BP, Komaraiah P, Roy KRRM, Kothari IL (2003) Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38(10):1457–1462. https://doi.org/10.1016/S0032-9592(03)00025-6

    Article  CAS  Google Scholar 

  • Reynoso SR, García MAJ, López BW, López LA, Iñíguez PC, Pérez FMA, Gutiérrez MD (2012) Identificación taxonómica de agaves (Agave spp.): utilizados para la elaboración del licor comiteco en Chiapas, Mexico. Agro Productividad 5(4):9–18

    Google Scholar 

  • Reynoso SR, López BW, López LA, Ruíz CJA, Castro MI, Cadena IP, Camas GR (2016) Áreas potenciales para el cultivo del agave (Agave americana L.) en la meseta comiteca, Chiapas. Agro productividad 9(2):56–61

    Google Scholar 

  • Rodríguez I, Piñeros Y (2007) Producción de complejos enzimáticos celulolíticos mediante el cultivo en fase sólida de Trichoderma sp. sobre los racimos vacíos de palma de aceite como sustrato. Vitae 14(2):35–42

    Google Scholar 

  • Royse DJ, Sánchez JE (2017) Worldwide production of oyster mushrooms Pleurotus spp. with emphasis on Iberoamerican countries. In: Sánchez JE, Royse DJ (eds) The biology, cultivation and nutritional properties of Pleurotus spp. Mushrooms, 1st edn. El Colegio de la Frontera Sur, San Cristobal de las Casas, pp 17–25

  • Rubio I, Cómbita AL, Ortiz RB, Navas MC (2005) Producción y purificación de la proteína Core del virus de la hepatitis C en el sistema de expresión del baculovirus para ensayos biológicos. Biomedica 25(1):34–45. https://doi.org/10.7705/biomedica.v25i1.1325

    Article  PubMed  Google Scholar 

  • Salmones D, Mata G (2015) Laccase production by Pleurotus djamor in agar media and during cultivation on wheat straw. Rev Mex Mic 42:17–23

    Google Scholar 

  • Sampath KNS, Nazeer RA, Jaiganesh R (2012) Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 42:1641–1649. https://doi.org/10.1007/s00726-011-0858-6

    Article  CAS  Google Scholar 

  • Sánchez RAMS (2010) Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Rev Tumbaga 1(5):61–91

    Google Scholar 

  • Sánchez A, Ysunza F, Beltrán GM, Esqueda M (2002) Biodegradation of viticulture wastes by Pleurotus: A source of microbial and human food and its potential use in animal feeding. J Agr Food Chem 50(9):2537–2542. https://doi.org/10.1021/jf011308s

    Article  CAS  Google Scholar 

  • Sánchez JE, Moreno L, Andrade GR (2011) Pasteurization of substrate for growing Pleurotus ostreatus by self-heating. In: Proceed 7th Int. Conf. Mush. Biol. Mush. Prod. Institut Nationale de la Recherche Agronomique-World Society for Mushroom Biology and Mushroom Products. Arcachon, France

  • Sánchez JE, Moreno L, Andrade GR (2016) Low input technology for growing mushrooms: self-heating pasteurization. WSMBMP Bulletin 15. http://wsmbmp.org/Bol15/1.html. Accessed 27 Jun 2020

  • Sandoval FGC, Casas GL (2014) Enzimas en la valorización de residuos agroindustriales. Rev Digit Univ 15(12):2–15. https://doi.org/10.1016/S0032-9592(03)00025-6

    Article  CAS  Google Scholar 

  • Santiago D, Rodríguez N, Mogollón G (2002) Potencial papelero de la fibra de sisal (Agave sisalana). Rev Forest Venez 46(2):19–27

    Google Scholar 

  • Santoyo AH, Hernández EG, Romero AR (1999) Celulosomas: sistemas multienzimáticos. Rev Soc Quím Mex 43(3–4):137–142

    Google Scholar 

  • Saucedo LJ, Castro MAJ, Rico JL, Campos GJ (2010) Optimización de hidrólisis ácida de bagazo de Agave tequilana Weber. Rev Mex Ing Quim 9(1):91–97

    Google Scholar 

  • Shen Q (2017) Commercial production of oyster mushroom Pleurotus spp. In: Sánchez JE, Royse DJ (eds) The biology, cultivation and nutritional properties of Pleurotus spp. Mushrooms, 1st edn. El Colegio de la Frontera Sur, San Cristóbal de las Casas, pp 127–148

  • Sherrer JSA (2013) Aprovechamiento de bagazo de Agave tequilana Weber para la producción de bio-hidrógeno. Dissertation, Instituto potosino de investigación científica y tecnológica

  • Sibanda N, Ruzvidzo O, Zvidzai CJ, Mashingaidze AB, Murungweni C (2019) Exploring for the possibility of utilizing Pleurotus ostreatus to manage Eichhornia crassipes in Zimbabwe. J Yeast Fungal Res 10(1):1–14. https://doi.org/10.5897/JYFR2019.0188

    Article  CAS  Google Scholar 

  • Silva MJ (2018) Obtención de azúcares reductores mediante hidrólisis enzimática de celulosa de Agave salmiana. Rev Cienc Farm Biomedicina 4(1):42

    Google Scholar 

  • Soto VC, Guzmán DL, Rodríguez O (1989) Cultivo del hongo comestible Pleurotus ostreatus sobre bagazo de maguey tequilero fermentado y mezclado con paja de trigo. Rev Mex Mic 5:97–101

    Google Scholar 

  • Su Y, Du R, Guo H, Cao M, Wu Q, Su R, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330. https://doi.org/10.1016/j.fbp.2014.04.001

    Article  CAS  Google Scholar 

  • Sulyman AO, Igunnu A, Malomo SO (2020) Isolation, purification and characterization of cellulase produced by Aspergillus niger cultured on Arachis hypogaea shells. Heliyon 6(12):e05668. https://doi.org/10.1016/j.heliyon.2020.e05668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suto M, Tomita F (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J Biosci Bioeng 92(4):305–311. https://doi.org/10.1016/S1389-1723(01)80231-0

    Article  CAS  PubMed  Google Scholar 

  • Tejeda L, Quintana J, Pérez J, Young H (2011) Obtención de etanol a partir de residuos de poda, mediante hidrólisis ácida e hidrólisis enzimática. Rev UDCA Actual Divulg Cient 14(1):111–116. https://doi.org/10.31910/rudca.v14.n1.2011.763

    Article  CAS  Google Scholar 

  • Ülker A, Sprey B (1990) Characterization of an unglycosylated low molecular weight 1, 4 glucanglucanohydrolase of Trichoderma reesei. FEMS Microbiol Lett 69(3):215–219. https://doi.org/10.1111/j.1574-6968.1990.tb04232.x

    Article  Google Scholar 

  • Vetayasuporn S (2007) Liginocellulosic materials as a possible substrate for Pleurotus ostreatus (Fr.) kummer cultivation. J Agron 6:167–170. https://doi.org/10.3923/ja.2007.167.170

    Article  Google Scholar 

  • Vuong TV, Wilson DB (2009) Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 75(21):6655–6661. https://doi.org/10.1128/AEM.01260-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Sakoda A, Suzuki M (2001) Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol 78(3):293–300. https://doi.org/10.1016/S0960-8524(01)00002-5

    Article  CAS  PubMed  Google Scholar 

  • Wei DL, Kirimura K, Usami S, Lin TH (1996) Purification and characterization of an extracellular β-glucosidase from the wood-grown fungus Xylaria regalis. Curr Microbiol 33:297–301. https://doi.org/10.1007/s002849900117

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wang Q, Jiang Z, Yang XX, Ji Y (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 31(2–3):162–167. https://doi.org/10.1016/j.biombioe.2006.06.015

    Article  CAS  Google Scholar 

  • Yang SZ, Jiang QY, Zhu H (2008) Characterization of a thermostable extracellular a β-glucosdiase with activities of exoglucanse and tranglycosylation from Paecilomyces thermophila. J Agri Food Chem 56(2):602–608. https://doi.org/10.1021/jf072279+

    Article  CAS  Google Scholar 

  • Yassien MAM, Jiman FAAM, Asfour HZ (2014) Production, purification and characterization of cellulase from Streptomyces sp. Afr J Microbiol Res 4(12):328–362. https://doi.org/10.5897/AJMR2013.6500

    Article  CAS  Google Scholar 

  • Zadrazil F, Kurtzman RH (1982) The biology of Pleurotus cultivation in the tropics. In: Chang ST, Quimio TH (eds) Tropical mushrooms biological nature and cultivation methods, 1st edn. The Chinese University Press, Hong Kong, pp 277–298

    Google Scholar 

  • Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications. In: Yang T, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals and polymers, 1st edn. Wiley, New Jersey. https://doi.org/10.1002/9781118642047.ch8

    Chapter  Google Scholar 

  • Zhu S, Wu Y, Yu Z, Wang C, Yu F, Jin S, Zhang Y (2006) Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosyst Eng 93(3):279–283. https://doi.org/10.1016/j.biosystemseng.2005.11.013

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the National Council of Science and Technology of Mexico (CONACYT) for the scholarship (NO. 954385) to complete her master’s degree studies. Special thanks to Mayra Lagunes Reyes and Lilia Moreno Ruíz for their technical support and advice. As well as to the producers of comiteco and pulque for their support in the realization of this project.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, design, preparation of the material, data collection, and analysis of the document presented.

Corresponding author

Correspondence to José E Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent does not apply because this document does not contain any human studies.

Research involving human participants and/or animals

The ethics committee of El Colegio de la Frontera Sur has confirmed that no ethical approval is required because this research does not contain any studies involving experimental animals or human participants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagunes-Reyes, M., Sánchez, J.E., Andrade-Gallegos, R.H. et al. Biodegradation of agave Comiteco bagasse by Pleurotus spp.: a source of cellulases useful in hydrolytic treatment to produce reducing sugars. 3 Biotech 13, 356 (2023). https://doi.org/10.1007/s13205-023-03783-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03783-w

Keywords

Navigation