Skip to main content

Advertisement

Log in

Identification of potential inhibitors against Alzheimer-related proteins in Cordyceps militaris ethanol extract: experimental evidence and computational analyses

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Laboratory experiments were carried out to identify the chemical composition of Cordyceps militaris and reveal the first evidence of their Alzheimer-related potential. Liquid chromatography–mass spectrometry analysis identified 21 bioactive compounds in the ethanol extract (1–21). High-performance liquid chromatography quantified the content of cordycepin (0.32%). Bioassays revealed the overall anti-Alzheimer potential of the extract against acetylcholinesterase (IC50 = 115.9 ± 11.16 µg mL−1). Multi-platform computations were utilized to predict the biological inhibitory effects of its phytochemical components against Alzheimer-related protein structures: acetylcholinesterase (PDB-4EY7) and β-amyloid protein (PDB-2LMN). In particular, 7 is considered as a most effective inhibitor predicted by its chemical stability in dipole-based environments (ground state − 467.26302 a.u.; dipole moment 11.598 Debye), inhibitory effectiveness (\(\overline{\mathrm{DS} }\) − 13.6 kcal mol−1), polarized compatibility (polarizability 25.8 Å3; logP − 1.01), and brain penetrability (logBB − 0.244; logPS − 3.047). Besides, 3 is promising as a brain-penetrating agent (logBB − 0.257; logPS − 2.400). The results preliminarily suggest further experimental attempts to verify the pro-cognitive effects of l(−)-carnitine (7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The main data generated in this work is included in the manuscript and the supplementary information. The raw data can be shared upon request from the corresponding author.

References

  • Ahsan MJ, Samy JG, Khalilullah H et al (2011) Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg Med Chem Lett 21:7246–7250

    Article  CAS  PubMed  Google Scholar 

  • Akıncıoğlu H, Gülçin İ (2020) Potent acetylcholinesterase inhibitors: potential drugs for Alzheimer’s disease. Mini Rev Med Chem 20:703–715

    Article  PubMed  Google Scholar 

  • Bellucci L, Ardèvol A, Parrinello M et al (2016) The interaction with gold suppresses fiber-like conformations of the amyloid β (16–22) peptide. Nanoscale 8:8737–8748

    Article  CAS  PubMed  Google Scholar 

  • Cai Z-L, Wang C-Y, Jiang Z-J et al (2013) Effects of cordycepin on Y-maze learning task in mice. Eur J Pharmacol 714:249–253

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Qu H, Li P et al (2011) Single dose administration of l-carnitine improves antioxidant activities in healthy subjects. Tohoku J Exp Med 224:209–213

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Xu T, Yan Y et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung J, Rudolph MJ, Burshteyn F et al (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286

    Article  CAS  PubMed  Google Scholar 

  • Colovic MB, Krstic DZ, Lazarevic-Pasti TD et al (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das G, Shin H-S, Leyva-Gómez G et al (2021) Cordyceps spp.: a review on its immune-stimulatory and other biological potentials. Front Pharmacol 11:2250

    Article  Google Scholar 

  • DiNicolantonio JJ, Lavie CJ, Fares H et al (2013) l-Carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. In: Mayo clinic proceedings. Elsevier, pp 544–551

  • Doig AJ, Derreumaux P (2015) Inhibition of protein aggregation and amyloid formation by small molecules. Curr Opin Struct Biol 30:50–56

    Article  CAS  PubMed  Google Scholar 

  • Eldeen IMS, Elgorashi EE, Van Staden J (2005) Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J Ethnopharmacol 102:457–464

    Article  CAS  PubMed  Google Scholar 

  • Feynman R (2010) The Feynman lectures on physics, vol II, Millenium. Basic Books, New York

    Google Scholar 

  • Fiest KM, Roberts JI, Maxwell CJ et al (2016) The prevalence and incidence of dementia due to Alzheimer’s disease: a systematic review and meta-analysis. Can J Neurol Sci 43:S51–S82

    Article  PubMed  Google Scholar 

  • Galimberti D, Scarpini E (2016) Emerging amyloid disease-modifying drugs for Alzheimer’s disease. Expert Opin Emerg Drugs 21:5–7

    Article  PubMed  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  • Gottwald MD, Rozanski RI (1999) Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: review and current status. Expert Opin Investig Drugs 8:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • He MT, Lee AY, Kim JH et al (2019) Protective role of Cordyceps militaris in Aβ 1–42-induced Alzheimer’s disease in vivo. Food Sci Biotechnol 28:865–872

    Article  CAS  PubMed  Google Scholar 

  • Jack CR, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jędrejko KJ, Lazur J, Muszyńska B (2021) Cordyceps militaris: an overview of its chemical constituents in relation to biological activity. Foods 10:2634

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeremic D, Jiménez-Díaz L, Navarro-López JD (2021) Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review. Ageing Res Rev 72:101496

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu C, Leibly D et al (2013) Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. Elife 2:e00857

    Article  PubMed  PubMed Central  Google Scholar 

  • Jozsef Szentmiklosi A, Galajda Z, Cseppento A et al (2015) The Janus face of adenosine: antiarrhythmic and proarrhythmic actions. Curr Pharm Des 21:965–976

    Article  PubMed  Google Scholar 

  • Kabir MT, Uddin M, Begum M et al (2019) Cholinesterase inhibitors for Alzheimer’s disease: multitargeting strategy based on anti-Alzheimer’s drugs repositioning. Curr Pharm Des 25:3519–3535

    Article  CAS  PubMed  Google Scholar 

  • Kassel LS (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  Google Scholar 

  • Kelly CA, Harvey RJ, Cayton H (1997) Drug treatments for Alzheimer’s disease: raise clinical and ethical problems. BMJ 314:693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontogiannatos D, Koutrotsios G, Xekalaki S, Zervakis GI (2021) Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris—a review of various aspects and recent trends towards the exploitation of a valuable fungus. J Fungi 7:986

    Article  CAS  Google Scholar 

  • Kumar A, Singh A (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Hong EK (2011) Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int Immunopharmacol 11:1226–1233

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Burger P, Vogel M et al (2012) The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Investig New Drugs 30:1917–1925

    Article  CAS  Google Scholar 

  • Li C, Li Z, Fan M et al (2006) The composition of Hirsutella sinensis, anamorph of Cordyceps sinensis. J Food Compos Anal 19:800–805

    Article  CAS  Google Scholar 

  • Li J-L, Wang Q-Y, Luan H-Y et al (2012) Effects of l-carnitine against oxidative stress in human hepatocytes: involvement of peroxisome proliferator-activated receptor alpha. J Biomed Sci 19:1–9

    Article  Google Scholar 

  • Lim L, Lee C, Chang E (2012) Optimization of solid state culture conditions for the production of adenosine, cordycepin, and D-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris (L.: Fr.) Link (Ascomycetes). Int J Med Mushrooms 14:181–187

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Mains EB (1958) North American entomogenous species of Cordyceps. Mycologia 50:169–222

    Article  Google Scholar 

  • Manoutcharian K, Acero G, Munguia ME et al (2004) Human single chain Fv antibodies and a complementarity determining region-derived peptide binding to amyloid-beta 1–42. Neurobiol Dis 17:114–121

    Article  CAS  PubMed  Google Scholar 

  • Marucci G, Buccioni M, Dal Ben D et al (2021) Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190:108352

    Article  CAS  PubMed  Google Scholar 

  • Mazumdera J, Chakraborty R, Sena S et al (2009) Synthesis and biological evaluation of some novel quinoxalinyl triazole derivatives. Der Pharma Chem 1:188–198

    Google Scholar 

  • Nakamura K, Konoha K, Yoshikawa N et al (2005) Effect of cordycepin (3′-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo (brooklyn) 19:137–141

    CAS  Google Scholar 

  • Nie Q, Du X, Geng M (2011) Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol Sin 32:545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olatunji OJ, Tang J, Tola A et al (2018) The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 129:293–316

    Article  CAS  PubMed  Google Scholar 

  • Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci 105:18349–18354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phull A-R, Ahmed M, Park H-J (2022) Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms 10:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohanka M (2012) Acetylcholinesterase inhibitors: a patent review (2008–present). Expert Opin Ther Pat 22:871–886

    Article  CAS  PubMed  Google Scholar 

  • Purohit R, Rajasekaran R, Sudandiradoss C et al (2008) Studies on flexibility and binding affinity of Asp25 of HIV-1 protease mutants. Int J Biol Macromol 42:386–391

    Article  CAS  PubMed  Google Scholar 

  • Sagaama A, Noureddine O, Brandán SA et al (2020) Molecular docking studies, structural and spectroscopic properties of monomeric and dimeric species of benzofuran-carboxylic acids derivatives: DFT calculations and biological activities. Comput Biol Chem 87:107311

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  • Schelterns P, Feldman H (2003) Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol 2:539–547

    Article  Google Scholar 

  • Schmidt K, Li Z, Schubert B et al (2003) Screening of entomopathogenic deuteromycetes for activities on targets involved in degenerative diseases of the central nervous system. J Ethnopharmacol 89:251–260

    Article  CAS  PubMed  Google Scholar 

  • Scott LJ, Goa KL (2000) Galantamine: a review of its use in Alzheimer’s disease. Drugs 60:1095–1122

    Article  CAS  PubMed  Google Scholar 

  • Sharma K (2019) Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep 20:1479–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers SA, Karanicolas J, Chang HW et al (2011) Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475:96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Bhardwaj VK, Das P, Purohit R (2022a) Identification of 11β-HSD1 inhibitors through enhanced sampling methods. Chem Commun 58:5005–5008

    Article  CAS  Google Scholar 

  • Singh R, Bhardwaj VK, Purohit R (2022b) Computational targeting of allosteric site of MEK1 by quinoline-based molecules. Cell Biochem Funct 40:481–490

    Article  CAS  PubMed  Google Scholar 

  • Song X, Qu H, Yang Z et al (2017) Efficacy and safety of l-carnitine treatment for chronic heart failure: a meta-analysis of randomized controlled trials. Biomed Res Int 2017:1–11

    Article  Google Scholar 

  • Sun X, Chen W-D, Wang Y-D (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Veena RK, Carmel EJ, Ramya H et al (2020) Caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), mycelia attenuates doxorubicin-induced oxidative stress and upregulates Krebs cycle dehydrogenases activity and ATP level in rat brain. Int J Med Mushrooms 22:593–604

    Article  PubMed  Google Scholar 

  • Viet MH, Ngo ST, Lam NS, Li MS (2011) Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J Phys Chem B 115:7433–7446

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Zhou X, Dong M et al (2022) Metabolites and novel compounds with anti-microbial or antiaging activities from Cordyceps fumosorosea. AMB Express 12:1–14

    Article  CAS  Google Scholar 

  • Weil MK, Chen A (2011) PARP inhibitor treatment in ovarian and breast cancer. Curr Probl Cancer 35:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehouse PJ (1993) Cholinergic therapy in dementia. Acta Neurol Scand 88:42–45

    Article  Google Scholar 

  • Wu X, Zhang M, Li Z (2019) Influence of infrared drying on the drying kinetics, bioactive compounds and flavor of Cordyceps militaris. LWT 111:790–798

    Article  CAS  Google Scholar 

  • Xi W, Hansmann UHE (2019) The effect of retro-inverse d-amino acid A β-peptides on A β-fibril formation. J Chem Phys 150:95101

    Article  Google Scholar 

  • Xie L, Luo Y, Lin D et al (2014) The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment. Nanoscale 6:9752–9762

    Article  CAS  PubMed  Google Scholar 

  • Yang JN, Wang Y, Garcia-Roves PM et al (2010) Adenosine A3 receptors regulate heart rate, motor activity and body temperature. Acta Physiol 199:221–230

    Article  CAS  Google Scholar 

  • Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis 12:1179573520907397

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa N, Nakamura K, Yamaguchi Y et al (2004) Antitumour activity of cordycepin in mice. Clin Exp Pharmacol Physiol 31:S51–S53

    Article  PubMed  Google Scholar 

  • Yu HM, Wang B-S, Huang SC, Duh P-D (2006) Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agric Food Chem 54:3132–3138

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, An L, Sun Y et al (2018) Improvement of learning and memory induced by Cordyceps polypeptide treatment and the underlying mechanism. Evid Based Complement Altern Med 2018:1–10

    Google Scholar 

  • Yue K, Ye M, Zhou Z et al (2013) The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 65:474–493

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wen C, Duan Y et al (2019) Advance in Cordyceps militaris (Linn) Link polysaccharides: isolation, structure, and bioactivities: a review. Int J Biol Macromol 132:906–914

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Gu L, Xiong W-T et al (2020) 1H NMR spectroscopy-based metabolic profiling of Ophiocordyceps sinensis and Cordyceps militaris in water-boiled and 50% ethanol-soaked extracts. J Pharm Biomed Anal 180:113038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Cooperative Research Programme between the Institute of Applied Research in Science and Technology, University of Sciences, Hue University and KeFa Science and Technology Co., Ltd. The authors also acknowledge the partial support of Hue Unversity under grant number DHH2022-01-198. The authors thank the partial support of Hue University under the Core Research Program, Grant No. NCM.DHH.2020.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Ai Nhung.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, N.M., Dat, T.T.H., Hai, N.T.T. et al. Identification of potential inhibitors against Alzheimer-related proteins in Cordyceps militaris ethanol extract: experimental evidence and computational analyses. 3 Biotech 13, 292 (2023). https://doi.org/10.1007/s13205-023-03714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03714-9

Keywords

Navigation