Skip to main content
Log in

Identification and validation of SSR markers for Xanthomonas axonopodis pv. punicae an incitant of bacterial blight of pomegranate

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study reports genome wide characterization and development of first set of microsatellite markers through in silico analysis of eight sequenced Xanthomonas axonopodis pv. punicae strains available in the public database. SSR survey resulted in identification of ~ 4638 perfect SSRs, with mean marker frequency 901 SSRs/Mb and densitiy of 11,006 bp/Mb aross the eight genomes. Frequency distribution graphs revealed hexa-nucleotide repeats were more prominent fowllowed by tri-, tetra-, di- and penta-nucleotides in the analysed genomes. We desinged 2927 SSR primers that are specific to the strain LMG 859 and ePCR confirmed on seven other Xap genomes. This resulted in identification of 542 informative SSRs that are producing single amplicons, from which 66 primers were successfully validated through wet lab experiments on eight Xap isolates of pomegranate. Furthermore, utility of these SSRs were demostrated by analysing molecular diversity among 22 Xap isolates using 20 Xap_SSR primers. SSRs revealed moderate genetic diversity among Xap isolates (61%) and grouped 11 isolates that are repersenting six different states into one cluster. This proved the earlier evidence of wider spread of ST3 type Xap acoss India using Multi locus Sequence Typing (MLST) technique. In summary, Xap_SSR will serve as powerful genomics tools that would helps in monitoring of population dynamics, taxonomy, epidomology and quarantine aspects in bacterial blight pathogen through development of microsatellite based Multilocus Variable number of Tandem repeat analysis (MLVA) in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data which supports our findings were listed in the supplementary files. All the relevant information obtained here will be freely available to any scientist for their research purpose.

References

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    Article  CAS  Google Scholar 

  • Akhtar M, Bhatti MR (1992) Occurrence of bacterial leaf spot of pomegranate in Pakistan. Pak J Agric Res 13:95–97

    Google Scholar 

  • Baldi P, La Porta N (2017) Xylella fastidiosa: host range and advance in molecular identification techniques. Front Plant Sci 8:944. https://doi.org/10.3389/fpls.2017.00944

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkum AV, Scherer S, Alphen LV et al (1998) Microbiology short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293

    Article  Google Scholar 

  • Biet E, Sun J, Dutreix M (1999) Conserved sequence preference in DNA binding among recombination proteins: an effect of ssDNA secondary structure. Nucleic Acids Res 27:596–600

    Article  CAS  Google Scholar 

  • Chand R, Kishun R (1991) Studies on bacterial blight (Xanthomonas campestris pv. punicae) on Pomegranate. Indian Phytopathol 44:370–372

    Google Scholar 

  • Chavan NP, Pandey R, Nawani N et al (2017) Genetic variability within Xanthomonas axonopodis pv. punicae, causative agent of oily spot disease of pomegranate. J Plant Pathol Microbiol 8:394. https://doi.org/10.4172/2157-7471.1000394

    Article  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24:861–862

    Article  CAS  Google Scholar 

  • Cui J, Cheng J, Nong D et al (2017) Genome-wide analysis of simple sequence repeats in bitter gourd (Momordica charantia). Front Plant Sci 8:1103

    Article  Google Scholar 

  • Della Coletta-Filho H, Takita MA, de Souza AA et al (2001) Differentiation of strains of Xylella fastidiosa by a variable number of tandem repeat analysis. Appl Env Microbiol 6:4091–4095. https://doi.org/10.1128/AEM.67.9.4091-4095.2001

    Article  Google Scholar 

  • Du L, Zhang C, Liu Q et al (2018) Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 34:681–683

    Article  CAS  Google Scholar 

  • Eknath WJ, Dange AS, Pagar TA et al (2015) Assessment of the genetic diversity among oily spot (Xanthomonas axonopodis pv. punicae) pathogen of pomegranate by randomly amplified polymorphic DNA analysis. J Appl Nat Sci 7:1006–1011

    Article  CAS  Google Scholar 

  • Field D, Wills C (1996) Long, polymorphic microsatellites in simple organisms. Proceed Biological Sci 263:209–215

    Article  CAS  Google Scholar 

  • Gadhe SK, Antre SH, Ghorpade BB et al (2016) Studies on molecular variability among Xanthomonas axonopodis pv. punicae isolates collected from different locations. Int J Pure Appl Biosci 4:160–66. https://doi.org/10.1878/2320-7051.2311

    Article  Google Scholar 

  • Gur-Arie R, Cohen CJ, Shelef L et al (2000) Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res 10:62–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hingorani M, Mehta P (1952) Bacterial leaf spot of pomegranate. Indian Phytopathololgy 5:55–56

    Google Scholar 

  • Icoz SM, Polat I, Sulu G et al (2014) First report of bacterial blight of pomegranate caused by Xanthomonas axonopodis. pv punicae in Turkey. Plant Dis 98:1427

    Article  CAS  Google Scholar 

  • Irey M, Gottwald TR, Graham JH et al (2006a) Post-hurricane analysis of citrus canker spread and progress towards the development of a predictive model to estimate disease spread due to catastrophic weather events. Plant Health Prog. https://doi.org/10.1094/PHP-2006-0822-1001-RS

    Article  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution fiorale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jaiswal M, Pandey A (2014) In silico mining of simple sequence repeats in whole genome of Xanthomonas sp. J Computer Sci Syst Biol 7:203–08. https://doi.org/10.4172/jcsb.1000157

    Article  CAS  Google Scholar 

  • Kiran Kumar KC, Khan ANA (2016) Molecular characterization of isolates of Xanthomonas axonopodis pv. punicae causing bacterial blight of pomegranate on the basis of RAPD-PCR. Greeen Farming 7:203–207

    Google Scholar 

  • Krishna P, Prasanna Kumar MK, Channappa M et al (2020) Antibiotic resilience in Xanthomonas axonopodis pv. punicae causing bacterial blight of pomegranate. Curr Sci 119:10

    Article  Google Scholar 

  • Kumar A, Sharma J, Munjal V et al (2019) Polyphasic phenotypic and genetic analysis reveals clonal nature of Xanthomonas axonopodis pv. punicae causing pomegranate bacterial blight. Plant Pathol. https://doi.org/10.1111/ppa.13128

    Article  Google Scholar 

  • Le Fleche P, Fabre M, Denoeud F et al (2002) High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol 27:2–37

    Google Scholar 

  • Leduc A, Traoré YN, Boyer K et al (2015) Bridgehead invasion of a monomorphic plant pathogenic bacterium: Xanthomonas citri pv. citri, an emerging citrus pathogen in Mali and Burkina Faso. Environ Microbiol 17:4429–4442

    Article  CAS  Google Scholar 

  • Lin H, Civerolo EL, Hu R et al (2005) Multilocus simple sequence repeat markers for differentiating strains and evaluating genetic diversity of Xylella fastidiosa. Appl Env Microbiol 71:4888–92. https://doi.org/10.1128/AEM.71.8.4888-4892.2005

    Article  CAS  Google Scholar 

  • Liu Y, Lee MA, Ooi EE et al (2003) Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats. J Clin Microbiol 41:94388–94394

    Google Scholar 

  • Luchi N, Ioos R, Santini A (2020) Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl Microb Biotech 104:2453–2468

    Article  CAS  Google Scholar 

  • Maiden MC (2006) Multilocus sequence typing of bacteria. Annu RevMicrobiol 60:561–588

    CAS  Google Scholar 

  • Mondal KK, Mani C (2009) ERIC-PCR genomic fingerprints and their relationship with pathogenic variability of Xanthomonas campestris pv. punicae, the incitant of bacterial blight of pomegranate. Curr Microbiol 59:616–20. https://doi.org/10.1007/s00284-009-9482-z

    Article  CAS  PubMed  Google Scholar 

  • Mondal KK, Rajendran TP, Phaneendra C et al (2012) The reliable and rapid polymerase chain reaction (PCR) diagnosis for Xanthomonas axonopodis pv. punicae in pomegranate. Afr J Microbiol Res Acad J 6:5950–956. https://doi.org/10.5897/AJMR12.543

    Article  CAS  Google Scholar 

  • NRCP (2015) National research centre on pomegranate vision 2050 document, Kegaon, Solapur, Maharashtra, India

  • Peakall R, Smouse PE (2012) GenAlEx 6.5 genetic analysis in excel population genetic software for teaching and research–an update. Bioinformatics 28:2537–539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006). DARwin software. Paris: Centre de Cooperation Internationale en Recherche Agronomique Pour le De’veloppement (CIRAD)

  • Petersen Y, Mansvelt E, Venter E et al (2010) Detection of Xanthomonas axonopodis pv. punicae causing bacterial blight on pomegranate in South Africa. Australas Plant Pathol 39:544–546

    Article  Google Scholar 

  • Pruvost O, Boyer K, Ravigné V et al (2019) Deciphering how plant pathogenic bacteria disperse and meet: Molecular epidemiology of Xanthomonas citri pv. citri at microgeographic scales in a tropical area of asiatic citrus canker endemicity. Evol Appl 12:1523–1538

    Article  CAS  Google Scholar 

  • Radhika DH, Gunnaiah R, Lamani A et al (2021) Long read genome sequence resources of Xanthomonas citri pv punicae strain Bagalkot, causing pomegranate bacterial blight. Mol Plant Microbe Interact. https://doi.org/10.1094/MPMI-01-21-0001-A

    Article  PubMed  Google Scholar 

  • Raghuwanshi KS, Hujare BA, Chimote VP et al (2013) Characterization of Xanthomonas axonopodis pv. punicae isolates from western Maharashtra and their sensitivity to chemical treatments. Bioscan 8:845–850

    CAS  Google Scholar 

  • Richard D, Tribot N, Boyer C et al (2017) First report of copper-resistant Xanthomonas citri pv. citri pathotype a causing asiatic citrus canker in Réunion, France. Plant Dis 101:503

    Article  Google Scholar 

  • Riju A, Rajesh MK, Sherin PTPF et al (2009) Mining of expressed sequence tag libraries of cacao for microsatellite markers using five computational tools. J Genet 88:217–225

    Article  CAS  Google Scholar 

  • Schuler GD (1997) Sequence mapping by electronic PCR. Genome Res 7:541–550

    Article  CAS  Google Scholar 

  • Sharma J, Sharma KK, Jadhav VT (2012a) Diseases of pomegranate. In: Misra AK, Chowdappa P, Sharma P, Khetrapal RK (eds) Diseases of fruit crops, 181–224. Indian Phytopatholpgy Society, New Delhi, India

    Google Scholar 

  • Sharma V, Midha S, Ranjan M et al (2012b) Genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859. J Bacteriol. https://doi.org/10.1128/JB.00181-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Sharma J, Jadhav V (2015) In: recent advances in diagonosis and management of plant disease. 119–26

  • Sharma J, Sharma KK, Kumar A et al (2017) Pomegranate bacterial blight: symptomatology and rapid inoculation technique for Xanthomonas axonopodis pv. punicae. J Plant Pathol 99:109–119

    Google Scholar 

  • Sreevatsan S, Pan X, Stockbauer KE et al (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proceed National Acad Sci USA 94:9869–9874

    Article  CAS  Google Scholar 

  • Sweet MJ, Scriven LA, Singleton I (2012) Microsatellites for microbiologists. Adv Appl Microbiol 81:169–207

    Article  CAS  Google Scholar 

  • Tardiani AC, Perecin D, Peixoto-Junior RF et al (2014) Molecular and pathogenic diversity among Brazilian isolates of Xanthomonas albilineans assessed with SSR marker loci. Plant Dis 98:540–546

    Article  CAS  Google Scholar 

  • Templeton AR, Clark AG, Weiss KM et al (2000) Recombinational and mutational hotspots within the human lipoprotein lipase gene. Am J Hum Genet 66:69–83

    Article  CAS  Google Scholar 

  • Vernière C, Bui Thi Ngoc L, Jarne P et al (2014) Highly polymorphic markers reveal the establishment of an invasive lineage of the citrus bacteria pathogen Xanthomonas citri pv. citri in its area of origin. Environ Microbiol 16:2226–2237

    Article  Google Scholar 

  • Wang X, Wang L (2016) GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci 7:1350

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Yang S, Chen Y et al (2018) Comparative genome-wide characterization leading to simple sequence repeat marker development for nicotiana. BMC Genom 19:500

    Article  Google Scholar 

  • Yazdankhah SP, Lindstedt BA, Caugant DA (2005) Use of variable- number tandem repeats to examine genetic diversity of Neisseria meningitides. J Clin Microbiol 43:1699–1705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Indian Council of Agricultural Research (ICAR), New Delhi for extended financial support through ICAR–National Research Centre on Pomegranate, Solapur. Authors are also thankful to Ms. Anitha Alarimar, project assistant working in Plant Pathology Department, ICAR–NRCP, Solapur for extending her help in carrying out this work.

Funding

Funds to conduct current research work were provided by Indian Council of Agricultural Research, New Delhi, India as institutional grants to ICAR–National Research Centre on Pomegranate, Solapur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash G. Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.G., Sharma, J., Nanjundappa, M. et al. Identification and validation of SSR markers for Xanthomonas axonopodis pv. punicae an incitant of bacterial blight of pomegranate. 3 Biotech 12, 153 (2022). https://doi.org/10.1007/s13205-022-03209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03209-z

Keywords

Navigation