Skip to main content
Log in

Modeling and optimization of tannase production with Triphala in packed bed reactor by response surface methodology, genetic algorithm, and artificial neural network

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this research, optimization of the production medium to enhance tannase production by Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor was studied. Amount of substrate Triphala, moisture content, aeration rate, and fermentation period was chosen for optimization study. During one variable at a time optimization, the highest tannase activity of 0.226 U/gds was shown with Triphala as a substrate at the fermentation period of 32 h. Furthermore, the optimum conditions predicted by response surface methodology (RSM) and genetic algorithm (GA) were found to be 11.532 g of substrate Triphala, 47.071% of the moisture content, and 1.188 L/min of an aeration rate with uppermost tannase activity of 0.262 U/gds. In addition, the single hidden layer feedforward neural network (SLFNN) and the radial basis function neural network (RBFNN) of an artificial neural network (ANN) were adopted to compare the prediction performances of the RSM and GA. It revealed that the ANN models (SLFNN, R2 = 0.9930; and RBFNN, R2 = 0.9949) were better predictors than the RSM (R2 = 0.9864). Finally, the validation experiment exhibited 0.265 U/gds of tannase activity at the optimized conditions, which is an 11-fold increase compared to unoptimized media in shake flask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdeshahian P, Samat N, Hamid AA et al (2010a) Utilization of palm kernel cake for production of β-mannanase by Aspergillus niger FTCC 5003 in solid substrate fermentation using an aerated column bioreactor. J Ind Microbiol Biotechnol 37(1):103

    Article  CAS  PubMed  Google Scholar 

  • Abdeshahian P, Samat N, Wan Y (2010b) Utilization of palm kernel cake for production of β-glucosidase by Aspergillus niger FTCC 5003 in solid substrate fermentation using an aerated column bioreactor. Biotechnology 9(1):17–24

    Article  CAS  Google Scholar 

  • Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Augur C, Favela-Torres E (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59

    Article  CAS  PubMed  Google Scholar 

  • Aithal M, Belur PD (2013) Enhancement of propyl gallate yield in nonaqueous medium using novel cell-associated tannase of Bacillus massiliensis. Prep Biochem Biotechnol 43(5):445–455

    Article  CAS  PubMed  Google Scholar 

  • Anil KJ (1996) Artificial neural networks: a tutorial. IEEE Xplore, pp 31–44

  • Ann-Hagerman E, Larry-Butler G (1978) Protein precipitation method for the quantitative determination of tannins. J Agric Food Chem 26(4):809–812

    Article  Google Scholar 

  • Bali C, Ramesh CK, Mita K, Rammurty A, Summit N (2013) Triphala: a comprehensive ayurvedic review. Int J Res Ayurveda Pharm 4(4):612–617

    Article  CAS  Google Scholar 

  • Beale MH, Martin T, Hagan HB (2018) Deep learning toolbox™, user’s guide. The MathWorks Inc, Natick

    Google Scholar 

  • Couto SR, Rivela I, Munoz MR, Sanromán A (2000) Ligninolytic enzyme production and the ability of decolourisation of Poly R-478 in packed-bed bioreactors by Phanerochaete chrysosporium. Bioprocess Eng 23(3):287–293

    Article  Google Scholar 

  • Derakhti S, Shojaosadati SA, Hashemi M et al (2012) Process parameters study of α-amylase production in a packed bed bioreactor under solid state fermentation with possibility of temperature monitoring. Prep Biochem Biotechnol 42(3):203–216

    Article  CAS  PubMed  Google Scholar 

  • Evans WC, Trease GE (1989) Phamacognosy, 16th edn. Bailere Traiadal, Elsevier, London

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Haykin S (1999) Neural networks—a comprehensive foundation, 2nd edn. Prentice Hall, Delhi

    Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (1999) Microbial production of gallic acid by modified solid state fermentation. J Ind Microbiol Biotechnol 23(3):173–177

    Article  CAS  Google Scholar 

  • Kinnear KE (1994) A perspective on the work in this book. In: Kinnear KE (ed) Advances in genetic programming. MIT Press, Cambridge, pp 3–17

    Google Scholar 

  • Kumar RA, Gunasekaran P, Lakshmanan M (1999) Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. J Basic Microbiol 39(3):161–168

    Article  CAS  PubMed  Google Scholar 

  • Mata-Gómez M, Mussatto SI, Rodríguez R, Teixeira JA, Martinez JL, Hernandez A, Aguilar CN (2015) Gallic acid production with mouldy polyurethane particles obtained from solid state culture of Aspergillus niger GH1. Appl Biochem Biotechnol 176(4):1131–1140

    Article  PubMed  CAS  Google Scholar 

  • Montgomery DC (2005) Design and analysis of experiments. John Wiley and Sons, New York

    Google Scholar 

  • Moreira MT, Feijoo G, Palma C, Lema JM (1997) Continuous production of manganese peroxidase by Phanerochaete chrysosporium immobilized on polyurethane foam in a pulsed packed-bed bioreactor. Biotechnol Bioeng 56(2):130–137

    Article  CAS  PubMed  Google Scholar 

  • Mukesh K, Shiny R, Vikas B, Raj KS (2015) Optimization of tannase production by a novel Klebsiella pneumonia KP715242 using central composite design. Biotechnol Rep 7:128–134

    Article  Google Scholar 

  • Natarajan K, Rajendran A (2012) Evaluation and optimization of food-grade tannin acyl hydrolase production by a probiotic Lactobacillus plantarum strain in submerged and solid state fermentation. Food Bioprod Process 90(4):780–792

    Article  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–152

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell DA (2000) New developments in solid-state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-state fermentation in biotechnology-fundamentals and applications. Asiatech publishers inc., New Delhi

    Google Scholar 

  • Prasanna DB, Gopal M, Subbalaxmi S (2009) Studies on the extracellular tannase from newly isolated Bacillus thurangiences BN2. In: Kai L (ed) Proceedings of international conference on chemical, biological and environmental engineering. World Scientific, Singapore, pp 379–384

  • Prasanna DB, Mugeraya G, Nirmala KR, Basavaraj N (2010) Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC. J Microbiol Biotechnol 20(4):32–736

    Google Scholar 

  • Prasanna DB, Rakesh VG, Dinesh CG (2012) Optimization of culture medium for novel cell-associated tannase production from Bacillus massiliensis using response surface methodology. J Microbiol Biotechnol 22(2):199–206

    Article  CAS  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC et al (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 21:1–21

    Google Scholar 

  • Rodriguez-Duran V, Contreras-Esquivel JC, Rodríguez R, Prado-Barragán LA, Aguilar CN (2011) Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor. J Microbiol Biotechnol 21(9):960–967

    Article  CAS  PubMed  Google Scholar 

  • Rout S, Banerjee R (2006) Production of tannase under mSSF and its application in fruit juice debittering. Indian J Biotechnol 5:346–350

    CAS  Google Scholar 

  • Sabu A, Augur C, Swati C, Pandey A (2006) Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Proc Biochem 41(3):575–580

    Article  CAS  Google Scholar 

  • Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK (2010) Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J Microbiol Biotechnol 26:599–605

    Article  CAS  Google Scholar 

  • Shaligram NS, Singh SK, Singhal RS, Szakacs G, Pandey A (2008) Compactin production in solid-state fermentation using orthogonal array method by P. brevicompactum. Biochem Eng J 41:295–300

    Article  CAS  Google Scholar 

  • Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using rhodanine. Anal Biochem 279:85–89

    Article  CAS  PubMed  Google Scholar 

  • Subbalaxmi S, Vytla RM (2016) Process optimization for tannase production by Bacillus gottheilii M2S2 on inert polyurethane foam support. Biocatal Agric Biotechnol 7:48–55

    Article  Google Scholar 

  • Subbalaxmi S, Vytla RM (2017a) Evaluation of kinetic parameters for growth, tannic acid utilization and tannase production in Bacillus gottheilii M2S2 using polyurethane foam blocks as support. 3 Biotech 7(5):275

    Google Scholar 

  • Subbalaxmi S, Vytla RM (2017b) Semi-solid state fermentation: a promising method for production and optimization of tannase from Bacillus gottheilii M2S2. Res J Biotechnol 12(4):39

    Google Scholar 

  • Subbalaxmi S, Vytla RM (2018) Solid state fermentation of Bacillus gottheilii M2S2 in laboratory-scale packed bed reactor for tannase production. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2018.1509086

    Article  Google Scholar 

  • Van de Lagemaat J, Pyle DL (2001) Solid-state fermentation and bioremediation: development of a continuous process for the production of fungal tannase. Chem Eng J 84(2):115–123

    Article  Google Scholar 

  • Van de Lagemaat J, Pyle DL (2004) Solid-state fermentation: a continuous process for fungal tannase production. Biotechnol Bioeng 87(7):924–929

    Article  PubMed  CAS  Google Scholar 

  • Vikas B, Anil K, Gunjan G, Vinod C (2013) A novel low molecular weight acido-thermophilic tannase from Enterobacter cloacae MTCC 9125. Biocatal Agric Biotechnol 2:132–137

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, India, for providing the facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandra Murty Vytla.

Ethics declarations

Conflict of interest

The authors certify that no actual or potential conflicts of interest in relation to this article exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, S., Vytla, R.M., Vijay, G.S. et al. Modeling and optimization of tannase production with Triphala in packed bed reactor by response surface methodology, genetic algorithm, and artificial neural network. 3 Biotech 9, 259 (2019). https://doi.org/10.1007/s13205-019-1763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1763-z

Keywords

Navigation