Skip to main content
Log in

DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Biotic and abiotic stresses negatively affect fitness, biomass production, and crop yield in plants. The dehydration-responsive element-binding proteins (DREB) are important transcription factors (TFs), and are induced by abiotic and biotic stresses. In this study, genome-wide identification, in silico sequence, and phylogenetic analyses and expression analyses of DREB2 genes under cadmium (Cd) and salt (NaCl) stresses in sorghum (Sorghum bicolor, Sb) were performed. Six putative SbDREB2 genes were identified in sorghum genome and all contained AP2 domain (PF00847). Nucleotide diversities in SbDREB2 genes were calculated as π: 0.53 and θ: 0.39, respectively. While exon numbers of them were either one or two, length of SbDREB2 proteins ranged from 238 to 388 amino acid residues. Fifty-six cis-acting regulatory elements, which are tissue specific, light, hormone, and stress responsive, were identified in the promotor regions of SbDREB2 genes. Analyses on digital expression data indicated that SbDREB2A and SbDREB2B are more expressed genes than other SbDREB genes in sorghum. Under Cd and NaCl stresses, expressions of SbDREB2 genes were induced at different levels. All SbDREB2 genes in root were up-regulated under salt stress. In case of Cd stress, SbDREB2D gene was particularly up-regulated in leaves and roots. Co-expression analyses revealed four of TFs in co-expression network, indicating that they have roles in transcriptional cascade. Furthermore, five miRNA target regions were identified for four SbDREB2 genes, indicating their roles in post-transcriptional regulation. The predicted 3D structure of SbDREB2 proteins showed some structural divergences and structure overlap between rice and sorghum varied at between 26.58 and 50%. Finally, obtained data could be used in breeding of stress-tolerant plants, particularly genetically engineered DREB2 expressing plants. Findings in this study would also contribute to the understanding of DREB2 genes in plants, especially in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  Google Scholar 

  • Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stressinducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNAbinding activity. Mol Genet Genom 277:189–198

    Article  CAS  Google Scholar 

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  CAS  Google Scholar 

  • Akbudak MA, Filiz E, Kontbay K (2018) Genome-wide identification and cadmium induced expression profiling of sulfate transporter (SULTR) genes in sorghum (Sorghum bicolor L.). Biometals 31:91

    Article  CAS  Google Scholar 

  • Ayadi M, Delaporte V, Li YF, Zhou DX (2004) Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett 562:147–154

    Article  CAS  Google Scholar 

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):39–49

    Article  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101

    Article  CAS  Google Scholar 

  • Bonetta D, McCourt P (1998) Genetic analysis of ABA signal transduction pathways. Trends Plant Sci 3:231–235

    Article  Google Scholar 

  • Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B et al (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289

    Article  CAS  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  Google Scholar 

  • Corrêa LGG, Riaño-Pachón DM, Schrago CG, Vicentini dos Santos R, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3(8):e2944

    Article  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  Google Scholar 

  • Delph LF, Kelly JK (2014) On the importance of balancing selection in plants. New Phytol 201:45–56

    Article  Google Scholar 

  • Ding J, Li D, Ohler U, Guan J, Zhou S (2012) Genomewide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach. BMC Genom 13(Suppl 3):S3

    CAS  Google Scholar 

  • Filiz E, Tombuloğlu H (2014) In silico analysis of DREB transcription factor genes and proteins in grasses. Appl Biochem Biotechnol 174:1272–1285

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607

    Chapter  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20:88–98

    Article  CAS  Google Scholar 

  • Herath V (2016) Small family, big impact: in silico analysis of DREB2 transcription factor family in rice. Comput Biol Chem 65:128–139

    Article  CAS  Google Scholar 

  • Hichri I, Muhovski Y, Clippe A, Žižková E, Dobrev PI, Motyka V, Lutts S (2016) SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ 39:62–79

    Article  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

    Google Scholar 

  • Hwang JE, Lim CJ, Chen H, Je J, Song C, Lim CO (2012) Overexpression of Arabidopsis dehydration responsive element-binding protein 2C confers tolerance to oxidative stress. Mol Cells 33:135–140

    Article  CAS  Google Scholar 

  • Ji YY, Li YQ (2010) The role of secondary structure in protein structure selection. Eur Phys J E 32:103–107

    Article  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Jothi R, Balaji S, Wuster A, Grochow AJ, Gsponer J, Przytycka MT, Aravind L, Babu MM (2009) Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 5:294

    Article  Google Scholar 

  • Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci 6:506

    Article  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  Google Scholar 

  • Khan ZH, Kumar B, Dhatterwal P, Mehrotra S, Mehrotra R (2017) Transcriptional regulatory network of cis-regulatory elements (Cres) and transcription factors (TFs) in plants during abiotic stress. Int J Plant Biol Res 5(2):1064

    Google Scholar 

  • Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1(5):reviews3002.1–3002

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M (2002) Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol 43:1073–1085

    Article  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011) Association of a SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    Article  CAS  Google Scholar 

  • Lescot M, De´hais P, Moreau Y, De Moor B, Rouze´ P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  Google Scholar 

  • Li H, Huang W, Liu ZW, Wu ZJ, Zhuang J (2017) Trihelix family transcription factors in tea plant (Camellia sinensis): identification, classification, and expression profiles response to abiotic stress. Acta Physiol Plant 39:217

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sahana Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol 56:e6

    Article  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genom 283:185–196

    Article  CAS  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochem Biophys Acta 1819:86–96

    CAS  PubMed  Google Scholar 

  • Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2013) GmDREB2A;2, a canonical dehydration-responsive element-binding protein 2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161:346–361

    Article  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  Google Scholar 

  • Panda P, Nath S, Chanu TT, Sharma GD, Panda SK (2011) Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol Plant 33:1737–1747

    Article  CAS  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301. https://doi.org/10.1093/nar/gkr1065

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L.. Plant J 50:54–69

    Article  CAS  Google Scholar 

  • Reddy DS, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma KK (2016) Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front Plant Sci 7:529

    Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the AP2/ERF domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    Article  CAS  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360

    Article  CAS  Google Scholar 

  • Shi X, Germain A, Hanson MR, Bentolila S (2016) RNA recognition motif-containing protein ORRM4 broadly affects mitochondrial RNA editing and impacts plant development and flowering. Plant Physiol 170:294–309

    Article  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  Google Scholar 

  • Swami AK, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328

    Article  CAS  Google Scholar 

  • Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vatansever R, Uras ME, Sen U, Ozyigit II, Filiz E (2017) Isolation of a transcription factor DREB1A gene from Phaseolus vulgaris and computational insights into its characterization: protein modeling, docking and mutagenesis. J Biomol Struct Dyn 35:3107–3118

    Article  CAS  Google Scholar 

  • Venter M, Botha FC (2010) Synthetic promoter engineering. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives. Springer, Berlin, pp 393–414

    Chapter  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:188–193

    Article  Google Scholar 

  • Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:25 l–264

    Article  Google Scholar 

  • Yamasaki M, Wright SI, McMullen MD (2007) Genomic screening for artificial selection during domestication and improvement in maize. Ann Bot 100:967–973

    Article  Google Scholar 

  • Yan HW, Hong L, Zhou YQ, Jiang HY, Zhu SW, Fan J, Cheng BJ (2013) A genome-wide analysis of the ERF gene family in Sorghum. Genet Mol Res 12:2038–2055

    Article  CAS  Google Scholar 

  • Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K, Sunkar R (2011) Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics 98:460–468

    Article  CAS  Google Scholar 

  • Zhou M, Ma J, Pang J, Zhang Z, Tang Y, Wu Y (2010) Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. Afr J Biotech 9:9255–9279

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EF and MAA conceived the study; MAA, EF, and KK conducted the experiments. MAA and EF wrote the manuscript; all authors read, edited, and approved the manuscript.

Corresponding authors

Correspondence to M. Aydın Akbudak or Ertugrul Filiz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbudak, M.A., Filiz, E. & Kontbay, K. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech 8, 426 (2018). https://doi.org/10.1007/s13205-018-1454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1454-1

Keywords

Navigation