Skip to main content
Log in

Selection and evaluation of microorganisms for biodegradation of agricultural plastic film

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Three Bacillus amyloliquefaciens isolates (HK1, GSDM02, and GSDM15) were tested for effectiveness in biodegradation of plastic films. Isolates were screened by plate on carbon-free medium and by using the clear-zone formation test. Their biodegradation ability was analyzed based on: film weight reduction, pH change of the fluid medium, a soil microbial biomass carbon test, scanning electron microscopy (SEM), and Fourier transform infrared spectrometry (FTIR). Polyvinyl alcohol (PVA) clear-zone and film weight reduction results revealed that the strain with a bigger clear-zone had a better biodegradation effect, that PVA can be evenly distributed in the medium, and that PVA can be a substitution for polyethylene in screening the biodegradation of strains. SEM and FTIR revealed that HK1 can tear the film apart and make surface chemical changes within 30 days. HK1 exhibited a better biodegradation effect in all tests, indicating its potential for helping solve the plastic pollution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Zeid DM, Müller RJ, Deckwer WD (2001) Anaerobic biodegradation of natural and synthetic polyesters. Dissertation, Technical University Braunschweig, Germany

  • Albertsson AC, Karlsson S (1990) The influence of biotic and abiotic environments on the degradation of polyethylene. Prog Polym Sci 15:177–192

    Article  CAS  Google Scholar 

  • Albertsson AC, Barenstedt C, Karlsson S (2010) Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym 45:97–103

    Article  Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh Kannan V (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Roy B, Roy D, Bajat R (2010) Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species. Polymer Degradation Stability 95:195–200

    Article  CAS  Google Scholar 

  • Dey U, Mondal NK, Das K, Dutta S (2012) An approach to polymer degradation through microbes. IOSR J Pharm 2:385–388

    Google Scholar 

  • Emadian SM, Onay TT, Demirel B (2016) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    Article  CAS  PubMed  Google Scholar 

  • He ZL (1997) Soil microbial biomass and its significance in nutrient cycling and environmental quality assessment. Soil 2:61–69

    Google Scholar 

  • Hotta Y, Hiraoka R, Yamaoka T (1997) Effect of particle size and polarity of long-chain molecules in polymeric films on the supercooling temperature. High Perform Polym 9:369–383

    Article  CAS  Google Scholar 

  • Jun Y, Yu Y, Wei-Min W, Jiao Z, Lei J (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  CAS  Google Scholar 

  • Kawai F, Watanabe M, Shibata M, Shigeo Y, Yasuhiro S, Shizue H (2004) Comparative study on biodegradability of polyethylene wax by bacteria and fungi. Polym Degrad Stab 86:105–114

    Article  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglisc P (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  PubMed  Google Scholar 

  • Llop C, Pérez A (2011) Technology available for recycling agricultural mulch film. Makromolekulare Chemie Macromolecular Symposia 57:115–121

    Article  Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19:851–858

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Tokiwa Y (1993) Distribution of poly (β-hydroxybutyrate) and poly (ε-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1:227–233

    Article  CAS  Google Scholar 

  • Nowak B, Pająk J, Drozd-Bratkowicz M, Rymarz M (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegrad 65:757–767

    Article  CAS  Google Scholar 

  • Peixoto B, Silva LP, Krüger RH (2017) Brazilian cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324:634–644

    Article  CAS  PubMed  Google Scholar 

  • Pometto AL, Lee BT, Johnson KE (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58:731–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quecholac-Piña X, García-Rivera MA, Espinosa-Valdemar RM, Vázquez-Morillas A, Beltrán-Villavicencio M, Cisneros-Ramos AL (2016) Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Environ Sci Pollut Res 24:1–6

    Google Scholar 

  • Rajandas H, Parimannan S, Sathasivam K, Ravichandran M, Yin LS (2012) A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polym Test 31:1094–1099

    Article  CAS  Google Scholar 

  • Restrepo-Flórez J, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodeterior Biodegrad 88:83–90

    Article  CAS  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210

    Article  CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  PubMed  Google Scholar 

  • Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    Article  CAS  PubMed  Google Scholar 

  • Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res 20:4146–4153

    Article  CAS  Google Scholar 

  • Usami A, Nakaya S, Nakahashi H, Miyazawa M (2014) Chemical composition and aroma evaluation of volatile oils from edible mushrooms(Pleurotus salmoneostramineus and Pleurotus sajor-caju). J Oleo Sci 63:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Xie YP, Xue JL (2005) Ultra-morphology and chemical composition of waxes secreted by two wax scale insects, Ceroplastes ceriferus (Fabricius) and C. Japonicus Green (Homoptera: Coccidae). Acta Entomol Sinica 48: 837–848

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Demonstration and Promotion of Microbial Degradation Film Technology in Gansu Province Grant (K3380216177). We are grateful to Professor Xiaoping Hu and Professor Fusako Kawai for providing us with more than 190 strains. We thank Professor John Richard Schrock for proofreading the text. Thanks goes to the Department of Plant Protection, Northwest Agriculture and Forest University for providing research facilities and thanks The Management Station for the Quality Construction of Cultivated Land in Gansu Province for assistance in field test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaopin Hu or Yang Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, J., Jia, R. et al. Selection and evaluation of microorganisms for biodegradation of agricultural plastic film. 3 Biotech 8, 308 (2018). https://doi.org/10.1007/s13205-018-1329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1329-5

Keywords

Navigation