Skip to main content
Log in

Phenotypic and molecular assessment of chickpea rhizobia from different chickpea cultivars of India

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, heterogeneity in natural chickpea rhizobia populations associated with 18 different chickpea (Cicer arientinum) cultivars of India was investigated. Physiological diversity of 20 chickpea rhizobia was characterized based on phenotypic parameters such as Bromothymol blue (BTB) test, pH, temperature and salinity tolerance. Based on response to BTB test and pH tolerance, all chickpea rhizobia were further divided into slow growers/alkali producers (14 isolates) and fast growers/acid producers (6 isolates). The temperature (upto 40 °C) and salinity (NaCl) tolerance (upto 6%) tests provided a wide description of physiological diversity among the rhizobial isolates. The intrinsic antibiotic resistance of each isolate against 14 different antibiotics distinguished all chickpea rhizobia into five clades at the level of 80% similarity coefficient. Further, based on UPGMA phylogeny of carbon utilization profile, all isolates were dispersed into six clusters at the level of 85% similarity coefficient, which indicated a remarkable variability among the rhizobia. The evaluation of nodule-forming efficiency of all isolates revealed that the isolate ACR15 was more competent for nodule formation than all other isolates. The representative strain from each carbon metabolic cluster was further subjected for molecular identification through 16S rRNA gene characterization. Neighbour-joining method-based phylogeny of 16S rRNA gene sequence revealed a high degree of species diversity among the isolates. Further, the prominent nodule-forming isolate such as ACR15 was identified as Mesorhizobium ciceri, while other isolates showed similarity with other species of Mesorhizobium genus. The present study contributed to the knowledge that besides M. ciceri and M. mediterraneum, chickpea can also be nodulated by many other native chickpea rhizobia which indicates the impact of exploration of promising native populations. These findings may support the further investigation of symbiotic as well as stress responsive genes of chickpea rhizobia leading to develop more effective inoculant strains for wide agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abaidoo RC, Keyser HH, Singleton PW, Borthakur D (2002) Comparison of molecular and antibiotic resistance profile methods for the population analysis of Bradyrhizobium spp. (TGx) isolates that nodulate the new TGx soybean cultivars in Africa. J Appl Microbiol 92:109–117

    Article  CAS  Google Scholar 

  • Abdelnaby M, Elnesairy NNB, Mohamed SH, Alkhayali YAA (2015) Symbiotic and phenotypic characteristics of rhizobia nodulaing Cowpea (Vigna Unguiculata L. Walp) Grown in Arid Region of Libya (Fezzan). J Environ Sci Eng 227–239

  • Agrawal PK, Agrawal S, Singh U, Katiyar N, Verma SK (2012) Phenotypic characterization of rhizobia from legumes and its application as a bioinoculant. J Agric Technol 8(2):681–692

    Google Scholar 

  • Alexandre A, Solange O (2011) Most heat tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiol Ecol 75:28–36

    Article  CAS  Google Scholar 

  • Alexandre A, Brígido C, Laranjo M, Rodrigues S, Oliveira S (2009) Survey of chickpea rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microbial Ecol 58:930–941

    Article  Google Scholar 

  • Ansari PG, Rao DLN, Pal KK (2014) Diversity and phylogeny of soybean rhizobia in central India. Ann Microbiol 64:1553–1565

    Article  Google Scholar 

  • Batzli JM, Graves WR, Van Berkum PB (1992) Diversity among rhizobia effective with Robinia pseudoacacia. Appl Environ Microbiol 12:2137–2143

    Google Scholar 

  • Belachew T (2010) Intrinsic antibiotic resistance, survival of Rhizobium leguminosarum strains and fixation potential of pea varieties (Pisum sativum L.) In south east Ethiopia. Int J Microbiol Res 1(2):75–79

    Google Scholar 

  • Berrada H, Fikri-Benbrahim K (2014) Taxonomy of the rhizobia: current perspectives. British Microbiol Res J 4:616–639. doi:10.9734/BMRJ/2014/5635

    Article  Google Scholar 

  • Brenner DJ, Staley JT, Krieg NR (2005) Classification of procaryotic organisms and the concept of bacterial speciation. Part A Introductory essays, In: Bergey’s Manual of Systematic Bacteriology 2nd edn. Springer, New York, 2:27–32

  • ElSheikh EAE, Wood M (1989) Salt effects on survival and multiplication of chickpea and soybean Rhizobia. Soil Biol Biochem 22:343–347

    Article  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Rao JVDK, Reddy G (2010) Biological control of chickpea collar rot by co-inoculation of antagonistic bacteria and compatible Rhizobia. Indian J Microbiol 50(4):419–424

    Article  CAS  Google Scholar 

  • Hilario E, Buckley TR, Young JM (2004) Improved resolution of the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Anton van Leeuwenhoek 86:51–64

    Article  CAS  Google Scholar 

  • Hungria ML, MCoca RG, Megias M (2001) Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biol Biochem 33(10):1349–1361

    Article  CAS  Google Scholar 

  • Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  • Jida M, Assefa F (2012) Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from chickpea (Cicer arietinum L.) growing areas of Ethiopia. African J Biotechnol 11(29):7483–7493

    CAS  Google Scholar 

  • Kiran Y (2009) Chickpea (Cicer arientinum L.). Agropedia http://agropedia.iitk.ac.in/content/cultivation-chick-pea-cicer-arientinum-l. Accessed 30 July 2009

  • Kuykendall LD (2005) Order VI. Rhizobiales ord. nov. In: Bergey’s manual of systematic bacteriology, 2nd edn, 2, the proteobacteria, part C, the alpha, beta, delta, and epsilonproteobacteria pp 324

  • Laranjo M, Machado J, Peter J, Young W, Oliveira S (2004) High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol 48:101–107

    Article  CAS  Google Scholar 

  • Laranjo M, Alexandre A, Rivas R, Velazquez E, Young JPW, Oliveira S (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400

    Article  CAS  Google Scholar 

  • Laranjo M, Young JPW, Oliveira S (2012) Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Microbiol 35(6):359–367

    Article  CAS  Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17

    Article  Google Scholar 

  • Ltaief B, Sifi B, Gtari M, Zaman-Allah M, Lachaal M (2007) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Can J Microbiol 53:427–434

    Article  CAS  Google Scholar 

  • Maatallah J, Berraho EB, Munoz S, Sanjuan J, Lluch C (2002) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J Appl Microbiol 93(4):531–540

    Article  CAS  Google Scholar 

  • Madrzak CJ, Liczak BGJK, Pudelko K, Lazewska D, Lampka B, Sadowsky MJ (1995) Diversity among field populations of Bradyrhizobium japonicum in Poland. Appl Environ Microbiol 61(4):1194–1200

    CAS  Google Scholar 

  • Messaoud BB, Aboumerieme I, Nassiri LE, Fahime E, Ibijbijen J (2014) Phenotypic and genotypic characteristics of rhizobia Isolated from meknes-tafilalet soils and study of their ability to nodulate Bituminaria bituminosa. British Microbiol Res J 4(4):405–417

    Article  Google Scholar 

  • Naeem F, Malik KA, Hafeez FY (2008) Pisum sativum-Rhizobium interactions under different environmental stresses. Pakistan J Bot 40:2601–2612

    Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994a) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum) L. Int J Syst Bacteriol 44:511–522

    Article  CAS  Google Scholar 

  • Nour SM, Cleyet-Marel JC, Beck D, Effosse A, Fernandez MP (1994b) Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum) L. Can J Microbiol 40:345–354

    Article  CAS  Google Scholar 

  • Nour SM, Cleyet-Marel JC, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating chick-peas (Cicer arietinum) L. and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648

    Article  CAS  Google Scholar 

  • Odee DW, Sutherl JM, Makatiani ET, McInroy SG, Sprent JI (1997) Phenotypic characteristics and composition of rhizobia associated with woody legumes growing in diverse Kenyan conditions. Plant Soil 188:65–75

    Article  CAS  Google Scholar 

  • Rai R, Dash KP, Mohapatra T, Singh A (2012) Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Indian J. of Exp. Biol 50:340–350

    CAS  Google Scholar 

  • Rivas R, Laranjo M, Mateos PF, Oliveira S, Martinez Molina E, Velazquez E (2007) Strains of Mesorhizobium amorphae and M. tianshanense carrying symbiotic genes of common chickpea endosymbiotic species constitute a novel biovar (ciceri) able to nodulate Cicer arietinum. Lett Appl Microbiol 44:412–418

    Article  CAS  Google Scholar 

  • Romero EM, Rosenblueth M (1990) Increased bean (Phaseolus vulgaris L.) nodulation competitiveness of genetically modified Rhizobium strains. Appl Environ Microbiol 56:2384–2388

    Google Scholar 

  • Saeki Y, Kaneko A, Hara T, Suzuki K, Yamakawa T, Nguyen MT, Nagatomo Y, Akao S (2005) Phylogenetic analysis of soybean nodulating rhizobia isolated from alkaline soils in Vietnam. Soil Sci Plant Nutr 51:1043–1052

    Article  CAS  Google Scholar 

  • Sambrok J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. vol 1-3. Cold Spring Harbor, New York

  • Sharma MP, Srivastava K, Sharma SK (2010) Biochemical characterization and metabolic diversity of soybean rhizobia isolated from Malwa region of Central India. Plant Soil Environ 56(8):375–383

    CAS  Google Scholar 

  • Simon Z, Mtei K, Gessesse A, Ndakidemi PA (2014) Isolation and characterization of nitrogen fixing rhizobia from cultivated and uncultivated soils of northern Tanzania. Am J Plant Sci 5:4050–4067

    Article  Google Scholar 

  • Stowers MD (1985) Carbon metabolism in Rhizobium species. Ann Rev Microbiol 39:89–108

    Article  CAS  Google Scholar 

  • Sulieman S, Tran LSP (2013) Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit Rev Biotechnol 33:309–327. doi:10.3109/07388551.2012.69577

    Article  CAS  Google Scholar 

  • Swelim DM, Hashem FM, Kuykendall LD, Hegazi NI, Abdel-Wahab SM (1997) Host specificity and phenotypic diversity of Rhizobium strains nodulating Leucaena, Acacia and Sesbania in Egypt. Biol Fertil Soils 25:224–232

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Van Rossum D, Schuurmans FP, Gillis M, Muyotcha AM, Van Verseveld HW, Stouthamer AH, Boogerd FC (1995) Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 61:1599–1609

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2010) Application of Rhizobium spp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yield of chickpea (Cicer arietinum L.). Int J Agric Res 5:148–156

    Article  CAS  Google Scholar 

  • Vincent JM (1970) In: International biological programme handbook: a manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications, Oxford 73–97

  • Weaver RW, Graham PH (1994) Most probable number counts. In: Methods of soil analysis. Part 2. Microbiological and biochemical properties. Soil Science Society of America. Madison, Wisconsin, pp 200–216

  • Weir BS, Turner SJ, Silvester WB, Park DC, Young JM (2004) Unexpectedly diverse Mesorhizobium strains and rhizobium leguminoarum nodulate native legume genera of New Zealand while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 70(10):5980–5987

    Article  CAS  Google Scholar 

  • Wood M, Cooper JE, Bjourson AJ (1988) Response of Lotus rhizobia to acidity and aluminum in liquid culture and in soil. Plant Soil 107:227–231

    Article  CAS  Google Scholar 

  • Yadav A, Singh AL, Rai GK, Singh M (2013) Assessment of molecular diversity in chickpea (Cicer arietinum L.) rhizobia and structural analysis of 16S rDNA sequences from Mesorhizobium ciceri. Polish J Microbiol 62(3):253–262

    CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Indian council of Agricultural Research, New Delhi, for providing financial assistance under the coordinated project “Application of microbes in Agriculture and Allied sector” (AMAAS). Anu S hypothesized the research work, performed the experiments and prepared the manuscript. Dilip A and Anjana S provided guidance during experiments, data analysis and language corrections. Kishore B contributed towards manuscript editing, data analysis and language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Sharma.

Ethics declarations

Conflict of interest

There is no conflict of interest between authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Bandamaravuri, K.B., Sharma, A. et al. Phenotypic and molecular assessment of chickpea rhizobia from different chickpea cultivars of India. 3 Biotech 7, 327 (2017). https://doi.org/10.1007/s13205-017-0952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0952-x

Keywords

Navigation